首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss in this contribution constraints on the origin of mass-loss from young stars brought by recent observations at high angular resolution (0.1″ = 14 AU) of the inner regions of winds from T Tauri stars. Jet widths and collimation scales, the large extent of the velocity profile as well as the detection of rotation signatures agree with predictions from magneto-centrifugal disk wind ejection models. However dynamically cold disk wind solutions predict too large terminal velocities and too low jet densities and ionisation fractions, suggesting that thermal gradients (originating in an accretion heated disk corona for example) may play an important role in accelerating the flow.  相似文献   

2.
The equations of wind accretion and variation of orbital parameters are rederived under conservation of total (rather than tangential) angular momentum, and applied to extrinsic AGB stars. These equations, together with nucleosynthesis in intrinsic AGB stars, are used to calculate heavy element overabundance for the scenario of successive pulses and mixing. The results show that wind accretion pertains when the orbital period is longer than 1300 d or 1600 d according as the initial mass of the Ba star is 2.5 M or 1.3 M, while cataclysmic variables will result if the period is shorter than 600 d in either case. The results are advantageous for interpreting a) the observations on the overabundance and orbital parameters, b) the observed lower limit of 600 d in the period of extrinsic S stars, and c) the observed fact that the mean eccentricity of Ba stars is greater than the mean eccentricities of extrinsic S stars and CH stars.  相似文献   

3.
We discuss in this contribution constraints on the origin of mass-loss from young stars brought by recent observations at high angular resolution (0.1″ = 14 AU) of the inner regions of winds from T Tauri stars. Jet widths and collimation scales, the large extent of the velocity profile as well as the detection of rotation signatures agree with predictions from extended (R e ≥ 1 AU) magneto-centrifugal disk wind ejection models. Detected poloidal and toroidal velocities imply large ejection efficiencies (ξ ? 0.05, λ ? 10), suggesting that thermal gradients (originating in an accretion heated disk corona for example) play an important role in accelerating the flow.  相似文献   

4.
We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to demonstrate their distribution and evolution. The wind velocity, spin period and magnetic field strength are studied under different mass loss rates. In our model, correlations between mass-loss rate and wind velocity are found and can be tested in further observations. We examine the parameter space where wind accretion is allowed, avoiding the barrier of rotating magnetic fields, with robust data on the magnetic field of neutron stars. Our model shows that most sources(six of nine systems) can be fed by the wind with relatively slow velocity, and this result is consistent with previous predictions. In a few sources,our model cannot fit the standard wind accretion scenario. In these peculiar cases, other scenarios(disk formation, partial Roche lobe overflow) should be considered. This would provide information about the evolutionary tracks of various types of binaries, and thus exhibit a clear dichotomy behavior in wind-fed X-ray binary systems.  相似文献   

5.
Results of observations of short-term wind variability in the classical T Tauri stars RW Aur and DR Tau are presented. Since the H CaII emission is absorbed by the absorption component of the H∈ line, which arises in the wind at a radial velocity of about ?120 km/s, the ratio of equivalent widths of the H and K emission lines of ionized calcium is used as an indicator of the line-of-sight wind density. Observations showed that the wind densities of RW Aur and DR Tau vary with a characteristic time of 4 to 5 days, i.e., with a period that is somewhat shorter than the period of the axial rotation of these stars. These results are interpreted in the framework of the conical wind model, which predicts cyclic repetitions of accretion and ejection events caused by the interaction of the star’s magnetosphere with the ionized gas at the inner boundary of the accretion disc.  相似文献   

6.
We present numerical simulations of stellar wind dynamics in the central parsec of the Galactic Centre, studying in particular the accretion of gas on to Sgr A*, the supermassive black hole. Unlike our previous work, here we use state-of-the-art observational data on orbits and wind properties of individual wind-producing stars. Since wind velocities were revised upwards and non-zero eccentricities were considered, our new simulations show fewer clumps of cold gas and no conspicuous disc-like structure. The accretion rate is dominated by a few close 'slow-wind stars' ( v w≤ 750 km s−1), and is consistent with the Bondi estimate, but variable on time-scales of tens to hundreds of years. This variability is due to the stochastic infall of cold clumps of gas, as in earlier simulations, and to the eccentric orbits of stars. The present models fail to explain the high luminosity of Sgr A* a few hundred years ago implied by Integral observations, but we argue that the accretion of a cold clump with a small impact parameter could have caused it. Finally, we show the possibility of constraining the total mass-loss rate of the 'slow-wind stars' using near infrared observations of gas in the central few arcseconds.  相似文献   

7.
Energetic outflows provide a dramatic accompaniment to accretion disks in all stages of star formation. The low extinction toward Classical T Tauri stars offers an opportunity to probe the star-disk interface region to search for the launch site and acceleration region of accretion-driven winds. This search is complicated by the fact that the dominant sources of emission in the optical and ultraviolet are the funnel flows and accretion shocks associated with magnetospheric accretion. Thus the quest for inner wind diagnostics requires disentangling accretion and outflow processes from the same line profile. We discuss two tracers of a high velocity inner wind in stars with high disk accretion rates. One, a hot component, is traced by helium emission and must arise very close to the star. A second, cooler component, is traced by blueshifted absorption in strong resonance lines and arises further from the star, but still within about ten stellar radii. We present evidence that the character of both magnetospheric accretion and the inner wind may differ among stars with high and low disk accretion rates.  相似文献   

8.
Young T Tauri stars exhibit strong solar-type magnetic activity, with extremely high temperature coronae and energetic flares. In a few systems discovered with Chandra and XMM-Newton there is also evidence for X-ray emission produced by shocks associated with magnetically channeled accretion. A recent 489 ksec Chandra HETG/ACIS-S observation of the classical T Tauri star TW Hydrae has provided a wealth of spectroscopic diagnostics not available in lower signal-to-noise ratio observations. Using line ratios for electron temperature, electron density, and column density we have found that the shock produced by the accelerating material in the accretion stream behaves as predicted by standard theory. However, the properties of the post-shock plasma differ substantially from the predictions of standard 1D shock models (Brickhouse et al. in Astrophys. J. 710:1835, 2010). The accretion process apparently heats the stellar atmosphere up to soft X-ray emitting temperatures, providing hot ions to populate the magnetic corona, in loops, stellar wind, and/or jets. This gas is highly turbulent, as evidenced by non-thermal line broadening. The observed properties of the accretion-fed corona should constrain theoretical models of an accretion-driven dynamo.  相似文献   

9.
The eccentricities of the barium stars   总被引:3,自引:0,他引:3  
We investigate the eccentricities of barium (Ba  ii ) stars formed via a stellar wind accretion model. We carry out a series of Monte Carlo simulations using a rapid binary evolution algorithm, which incorporates full tidal evolution, mass loss and accretion, and nucleosynthesis and dredge-up on the thermally pulsing asymptotic giant branch. We follow the enhancement of barium in the envelope of the accreting main-sequence companion and dilution into its convective envelope once the star ascends the giant branch.
The observed eccentricities of Ba  ii stars are significantly smaller than those of an equivalent set of normal red giants but are nevertheless non-zero. We show that such a distribution of eccentricities is consistent with a wind accretion model for Ba  ii star production with weak viscous tidal dissipation in the convective envelopes of giant stars. We successfully model the distribution of orbital periods and the number of observed Ba  ii stars. The actual distribution of eccentricities is quite sensitive to the strength of the tides, so that we are able to confirm that this strength is close to, but less than, what is expected theoretically and found with alternative observational tests. Two systems – one very short-period but eccentric, and one long-period and highly eccentric – still lie outside the envelope of our models, and so require a more exotic formation mechanism. All our models, even those which were a good fit to the observed distributions, overproduced the number of high-period barium stars, a problem that could not be solved by some combination of the three parameters: tidal strength, tidal enhancement and wind accretion efficiency.  相似文献   

10.
3M⊙AGB星表面重元素丰度的演化   总被引:1,自引:0,他引:1  
张波  彭秋和 《天文学报》1997,38(3):231-238
本文以13C(a,n)16O及22Ne(a,n)25Mg作为双脉冲中子源,对于质量为3M■、初始金属度为0.015的热脉冲AGB星,采用无分叉s-过程反应通道,结合最新恒星演化的计算结果、在各参量合理取值范围内,计算了表面重元素丰度和碳氧比(C/O)的演化并与观测值进行比较。结果表明,就轻重s-元素丰度关系图和 C/O重元素丰度关系图而言,在各参量的合理取值范围内,理论计算曲线能够同时落入观测值区域之内,MS、S星和C星对应的平均中子辐照量范围是对AGB星的s-元素超丰影响较大。在达到渐近分布后才开始挖掘的合理假设下,其它因素(例如核心质量Mc、每次脉冲挖掘质量大小是否随脉冲数变化)对内禀AGB星表面重元素超丰影响不大。何时发生第三次挖掘对MS、S星的重元素超丰情况影响较大,但C星丰度几乎不受影响。  相似文献   

11.
We obtain the chemical abundances of six barium stars and two CH subgiant stars based on the high signal-to-noise ratio and high resolution Echelle spectra. The neu- tron capture process elements Y, Zr, Ba, La and Eu show obvious overabundances relative to the Sun, for example, their [Ba/Fe] values are from 0.45 to 1.27. Other elements, in- cluding Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn and Ni, show comparable abundances to the Solar ones, and their [Fe/H] covers a range from -0.40 to 0.21, which means they belong to the Galactic disk. The predictions of the theoretical model of wind accretion for bi- nary systems can explain the observed abundance patterns of the neutron capture process elements in these stars, which means that their overabundant heavy-elements could be caused by accreting the ejecta of AGB stars, the progenitors of present-day white dwarf companions in binary systems.  相似文献   

12.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present a survey of accretion disc models around compact objects — in particular the accretion onto white dwarfs, neutron stars, and black holes. We discuss both the thin disc as well as thick disc models and also the feaibility where either of these can be applied in the astrophysical systems. The crucial role of magnetic field in facilitating the formation of accretion discs in neutron stars is indicated. The prime significance of accretion discs in the generation of soft and hard X-rays is also discussed. Thick disc models are found to explain the observations of active galactic nuclei and also collimated and persistent jets in some of the radio sources.  相似文献   

14.
本文绘出了计算吸积盘边缘物质和角动量损失,以及它们对激变双星演化影响的理论模型.计算结果表明,紫外天文卫星(IUE)观测到的高速物质流是来源于吸积盘边缘,吸积盘边缘的角动量损失可以成为周期大于3小时的激变双星演化的物理机制.  相似文献   

15.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

16.
在包括双星及逃逸物质的系统总角动量守恒模型的基础上,采用星风质量吸积机制,由伴星通过逐次脉冲从主星吸积物质并与其外包层进行混合的模型出发,自洽地计算了钡星的重元素超丰,并给出理论计算结果与观测值的比较.计算结果表明,当取Bondi-Hoyle质量吸积率的五分之一作为实际吸积率时,对于轨道周期较长(P>1600天)、相距较远的钡星系统,在误差范围内,理论计算曲线与大多数样品星的重元素丰度观测值相符合;而对于HD204075和HD16458两颗钡星,将质量吸积率增大为Bondi-Hoyle质量吸积率的二分之一时,计算结果与观测值符合较好,这表明质量吸积率在Bondi-Hoyle质量吸积率的十分之一至二分之一之间.对于具有较短轨道周期(P<600天)的钡星系统,计算结果与丰度观测值偏差较大,表明钡星系统中还有其它的形成机制.  相似文献   

17.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

18.
We study the usage of the X-ray light curve, column density towards the hard X-ray source, and emission measure (density square times volume), of the massive binary system η Carinae to determine the orientation of its semimajor axis. The source of the hard X-ray emission is the shocked secondary wind. We argue that, by itself, the observed X-ray flux cannot teach us much about the orientation of the semimajor axis. Minor adjustment of some unknown parameters of the binary system allows to fit the X-ray light curve with almost any inclination angle and orientation. The column density and X-ray emission measure, on the other hand, impose strong constrains on the orientation. We improve our previous calculations and show that the column density is more compatible with an orientation where for most of the time the secondary – the hotter, less massive star – is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage. The 10-week X-ray deep minimum, which results from a large decrease in the emission measure, implies that the regular secondary wind is substantially suppressed during that period. This suppression is most likely resulted by accretion of mass from the dense wind of the primary luminous blue variable star. The accretion from the equatorial plane might lead to the formation of a polar outflow. We suggest that the polar outflow contributes to the soft X-ray emission during the X-ray minimum; the other source is the shocked secondary wind in the tail. The conclusion that accretion occurs at each periastron passage, every five and a half years, implies that accretion had occurred at a much higher rate during the Great Eruption of η Car in the 19th century. This has far reaching implications for major eruptions of luminous blue variable stars.  相似文献   

19.
We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259−63 and PSR J0045−73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259−63 due to ‘inverse Compton drag' is small, but that this process may confine the wind of PSR J0045−73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259−63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the γ-ray emission from the unshocked wind may be detectable by atmospheric Cherenkov detectors or by the new generation of satellite-borne γ-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.  相似文献   

20.
We present Hα spectropolarimetry observations of a sample of 23 Herbig Ae/Be stars. A change in the linear polarization across Hα is detected in a large fraction of the objects, which indicates that the regions around Herbig stars are flattened (disc-like) on small scales. A second outcome of our study is that the spectropolarimetric signatures for the Ae stars differ from those of the Herbig Be stars, with characteristics changing from depolarization across Hα in the Herbig Be stars, to line polarizations in the Ae group. The frequency of depolarizations detected in the Herbig Be stars (seven out of 12) is particularly interesting as, by analogy with classical Be stars, it may be the best evidence to date that the higher-mass Herbig stars are surrounded by flattened structures. For the Herbig Ae stars, nine out of 11 show a line polarization effect that can be understood in terms of a compact Hα emission that is itself polarized by a rotating disc-like circumstellar medium. The spectropolarimetric difference between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung–Russell diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. Alternatively, the interior polarized line emission apparent in the Ae stars may be masked in the Herbig Be stars owing to their higher levels of Hα emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号