首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In keeping with the standard scientific methods, investigations of salinity processes focus on the collection and interpretation of contemporary scientific data. However, using multiple lines of evidence from non-hydrogeologic sources such as geomorphic, archaeological and historical records can substantially add value to the scientific investigations. By using such evidence, the validity of the assumptions about salinity processes in Australian landscapes is challenged, especially the assumption that the clearing of native vegetation has resulted in rising saline groundwater in all landscapes. In the Corangamite region of south-west Victoria, salinity has been an episodic feature of the landscapes throughout the Quaternary and was present at the time of the Aboriginal inhabitants and the first pastoral settlement by Europeans. Although surface-water salinity has increased in some waterways and the area of salinised land has expanded in some landscapes, there is no recorded evidence found which supports significant rises in groundwater following widespread land-use change. In many areas, salinity is an inherent component of the region’s landscapes, and sustains world-class environmental assets that require appropriate salinity levels for their ecological health. Managing salinity requires understanding the specific salinity processes in each landscape.  相似文献   

2.
潘钊  孙自永  马瑞  常启昕  胡雅璐  刘源  王旭 《地球科学》2018,43(11):4226-4236
为揭示中、低纬度高寒山区降雨-径流的形成过程,指导水资源的合理开发利用,选择黑河上游红泥沟小流域为研究区,基于河道径流量及雨水和河水稳定同位素的观测数据,构建二元混合模型,计算了2013年7月23日及8月21日两次典型降雨-径流事件中事件水(降雨)和事件前水(流域前期储水)对河道径流的贡献及其动态变化.结果显示:两次降雨事件中事件前水的贡献比例分别为68.69%和54.46%;事件前水的贡献比例在涨水阶段减小,在退水阶段增大.结合河水电导率的观测结果,进一步分析了降雨-径流的形成过程:河道径流的形成主要受饱和区蓄满产流、河岸带地下径流和山坡地下径流3种产流机制控制;事件水主要源于蓄满产流,事件前水主要源于河岸带和山坡地下径流;事件初期和末期以河岸带地下水补给为主,涨水阶段后期和退水阶段前期转为以蓄满产流和山坡地下水补给为主,洪峰期间蓄满产流的贡献达到最大.两次事件的对比表明,事件前的湿度条件和降雨强度对降雨-径流的形成过程有着重要影响:前期越湿润,流域储水能力越弱,导水能力越强,事件水的贡献越大,河道径流对降雨的响应越迅速;降雨强度越大,蓄满产流及其中的事件水比例越高,河道径流中事件水的比例也越高.   相似文献   

3.
Understanding catchment-scale patterns of groundwater and stream salinity are important in land- and water-salinity management. A large-scale assessment of groundwater and stream data was undertaken in the eastern Mt Lofty Ranges of South Australia using geographical information systems (GIS), regional scale hydrologic data, hydrograph separation and hydrochemical techniques. Results of the study show: (1) salts were mostly of marine origin (75%), while sulfate and bicarbonate from mineral weathering comprised most of the remainder, (2) elevated groundwater salinities and stable water isotopic compositions similar to mean rainfall indicated that plant transpiration was the primary salt accumulation mechanism, (3) key factors explaining groundwater salinity were geology and rainfall, with overall catchment salinity inversely proportional to average annual rainfall, and groundwater salinity ‘hotspots’ (EC >8 mS/cm) associated with geological formations comprising sulfidic marine siltstones and shales, (4) shallow groundwater correlated with elevated stream salinity, implying that baseflow contributed to stream salt loads, with most of the annual salt load (estimated to be 24,500 tonnes) occurring in winter when baseflow volume was highest. Salt-load analysis using stream data could be a practical, low-cost technique to rapidly target the investigation of problem areas within a catchment.  相似文献   

4.
Historical evidence of early salinity, vegetation and landuse changes, and pedological studies have been used in formulating a new model for salinity processes acting on the Dundas Tableland in southwestern Victoria. Contrary to previous assumptions, salinity in this area was a feature of the pre‐European landscape and was noted in the earliest surveys and journals. Analysis of historical records show an initial post‐settlement increase in the tree numbers, followed by a rapid decline much later than previously assumed. Accumulation of salts in the regolith may be attributed to marine incursions during the Miocene and Pliocene, the extensive weathering to develop a deep regolith, and wind‐blown and cyclic salt accumulation. A trend analysis of historical streamflow and bore hydrograph records does not indicate rising groundwater levels. The pedological features of duplex and sodic soil profiles support a history of prolonged seasonal waterlogging. A model with seasonal lateral flow of water through the upper regolith can better account for the spread of salinity than the rising groundwater hypothesis. By control of waterlogging, land managers could improve soil structure, enhance root growth and soil water use, as well as inhibit the spread of salinity.  相似文献   

5.
The stable isotopes of oxygen and hydrogen were used to determine the seasonal contributions of precipitation to groundwater recharge at a forested catchment area in the upper North Han River basin, Korea. A comparison of the stable isotopic signatures of groundwater and precipitation indicates that the precipitations which occurred during both the dry and rainy seasons are the important source of groundwater recharge in this region. A stable isotopic signature shown in the stream waters at the upstream reaches is similar to that of groundwaters, indicating that stream waters are mostly fed by groundwater discharge. Reservoir waters in the downstream flood control dams have lower deuterium excess values or d-values compared with those of the upstream waters, indicating a secondary evaporative enrichment. These results can provide a basis for the effective management of groundwater and stream water resources in the North Han River basin.  相似文献   

6.
High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (~800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity ‘hotspot’. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.  相似文献   

7.
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.  相似文献   

8.
The interaction between surface-water streams and groundwater in the Maules Creek catchment of northern New South Wales, Australia has been investigated using a wide range of techniques. Zones of groundwater discharge were mapped by measuring the temperature and fluid electrical-conductivity distribution in bores and surface water. Zones where surface water appears to be recharging the aquifer were investigated by measuring the vertical head gradient between the stream and adjacent bores and by estimates of the decreasing surface flow. Geological heterogeneity appears to be the most significant factor in controlling exchange. Lithological information was assembled using geophysical logging of existing bores, supplemented by the results of electrical resistivity imaging. A preliminary water balance was assembled from the available State records of groundwater abstraction for irrigation, rainfall, evapotranspiration and flow gauging in Maules Creek and the adjacent Namoi River. The analysis has demonstrated the complexity of these coupled systems and gives an indication of the most efficient techniques to be deployed in the field to investigate these complex but important systems.  相似文献   

9.
甘肃省黑河流域土地沙漠化的水文学指征初探   总被引:1,自引:0,他引:1  
黑河流域土地沙漠化及水资源合理利用一直是该流域研究的焦点问题。文章首先从土地沙漠化分布范围、种类、面积、沙漠化程度等方面,分析了黑河流域土地沙漠化的现状:土地沙漠化主要发生在流域的中下游地区,尤以额济纳绿洲沙漠化形势严峻;其次,从地表水、地下水之水质、水量方面分析了黑河流域水环境变化的状况:人类不合理的经济活动,导致黑河流域水资源环境恶化,具体表现在地下水、地表水水位下降、水质恶化。在此基础上,从黑河流域地表水及地下水着手,初步提出了黑河流域土地沙漠化的水文学指征体系:其中,地表水主要包括蒸发与蒸腾的消耗、径流和渗漏3个部分;径流部分又分为地表水流经区域及水量变化、干流水量的系列变化以及泥沙沉积3方面;地下水则主要有水质变化及水位的连续变化2方面。  相似文献   

10.
The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.  相似文献   

11.
黑河干流浅层地下水与地表水相互转化的水化学特征   总被引:14,自引:0,他引:14  
通过分析黑河干流地表水与地下水的水化学特征,识别沿黑河干流不同地带地下水与地表水的相互转化关系.研究结果表明:(1)在祁连山区,地下水与地表水的转化以地下水向河流排泄为主.(2)南部盆地,在山前戈壁带,出山河水入渗转化为地下水;溢出带地下水以泉的形式转化为地表水;进入细土平原后,汛期河水补给地下水,非汛期地下水补给河水;在农灌区引河水通过田间入渗补给地下水.(3)北部盆地,在金塔灌区,地下水主要接受引水灌溉入渗补给;在金塔灌区到额济纳旗,河流入渗转化为地下水.  相似文献   

12.
The current research has been conducted to evaluate groundwater aquifers qualitatively in the area located in the Western side of Qena city. The Quaternary aquifer represents the main groundwater source in the study area. It exists under unconfined to semiconfined conditions at depths varying between 4 m due North and 80 m in the South. The chemical analyses of the groundwater samples indicate that 77% of the total samples are fresh and 20% are brackish, while only 3% are saline. In addition, the iso-salinity contour map indicates that the salinity increases towards the central and northern parts of the study area. The total and permanent hardness increase as water salinity increases and vice versa in case of temporary hardness in the groundwater samples. The chemical water types and the ion ratios indicate meteoric origin of groundwater as well as the dissolution of terrestrial and marine salts. The contribution of recent recharge from the River Nile to a few groundwater wells in the study area varies from low to high. In addition, the most recharge sources are from the precipitation. Nitrate concentrations in groundwater increase towards the central and Northern areas significantly elevated in response to increasing anthropogenic land uses. Much of the solutes and physicochemical parameters in these waters are under the undesirable limits of World Health Organization (WHO) for drinking purpose, and a plot of sodium adsorption ratio versus EC shows that about 23% of the groundwater samples are good water quality, about 45% of groundwater samples are moderate quality, and 23% of the groundwater samples are intermediate water class, while the rest of samples (9%) are out of the range.  相似文献   

13.
Understanding the water salinisation mechanism is the basis for regional salt management. Mineral dissolution, evaporation and transpiration are the main factors controlling natural water salinity in arid inland basins; however, the two are difficult to differentiate. Because deuterium excess decreases during evaporation and is unrelated to the isotopic composition of the initial water, it is a potential tool for determining the contribution of the evapoconcentration of a given water body using the relationship between deuterium excess and salinity rather than between δ18O (or δ2H) and salinity. In this paper, the relationship between the residual water fraction and deuterium excess was derived from the Rayleigh distillation equation. The contribution of evapoconcentration and mineral dissolution and/or transpiration for a given water body can be determined by comparing the residual water fraction and salinity between the initial water and the evapoconcentrated water. The extremely arid Tarim River Basin in NW China is taken as an example to demonstrate deuterium excess and salinity evolution from the source stream to river water, lake/reservoir water and groundwater. The results show that mineral dissolution contributes most of the salinity (67–77%) for Boston Lake and the Kongque and Tarim rivers relative to the source stream. Mineral dissolution and/or transpiration contribute greater salinity (73–99.6%) to the groundwater recharged by the river water in the middle and lower reaches of the Tarim River. The study provides a method for determining the salinisation mechanism and is important for salt movement and management.  相似文献   

14.
Hydrogeological mapping and drainage analysis can form an important tool for groundwater development. Assessment of drainage and their relative parameters have been quantitatively carried out for the Morar River Basin, which has made positive scientific contribution for the local people of area for the sustainable water resource development and management. Geographical Information System has been used for the calculation and delineation of the morphometric characteristics of the basin. The dendritic type drainage network of the basin exhibits the homogeneity in texture and lack of structural control. The stream order ranges from first to sixth order. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 2.00 to 5.50 and the elongation ratio (0.327) reveals that the basin belongs to the elongated shaped basin category. The results of this analysis would be useful in determining the effect of catchment characteristics such as size, shape, slope of the catchment and distribution of stream net work within the catchment.  相似文献   

15.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

16.
Luxor, the modern Egyptian city that occupies the site of ancient Thebes, is famed for its magnificent ancient monuments. Since 1967, the Aswan high dam has prevented the annual flooding of the Nile River, resulting in excessive salt accumulation on the Nile floodplains and on exposed monument surfaces. In addition, the expansion of agricultural land within the Luxor study area has resulted in increased salinity and groundwater level. These conditions accelerate the degradation of buried and exposed monuments that were fairly well preserved in the past. To mitigate this problem, it is necessary to first understand the near-surface setting and the groundwater conditions of the Luxor area. A geophysical investigation was carried out using resistivity and electromagnetic surveys. In addition, a chemical analysis was conducted of some surface water samples collected from canals and the sacred lake of Memnon Temple. Based on the results of the geophysical surveys and the chemical analysis of the water samples, the shallow subsurface was characterized into four geoelecterical units. Groundwater flow directions were determined to be from the central area to the west, causing a rise in the groundwater levels and groundwater salinity in the area of monuments.  相似文献   

17.
Groundwater is an important decentralized source of drinking water. Being underground, it is relatively less susceptible to contamination. In addition to domestic needs, it is extensively used for irrigation and industrial purposes. It is therefore necessary to implement groundwater recharge systems by capturing the rainwater runoff. In the present study, GIS-based hydrological assessment of watershed has been used to identify the potential sites for locating the groundwater recharge structures. Based on land use, soil and topography, rainfall runoff modelling was carried out in GIS for a sub-watershed of River Kanhan, in Nagpur District, Maharashtra State, India. Five potential sites with maximum flow accumulation were delineated using the rational method for peak runoff estimation. As the groundwater recharge potential also depends on the geological and geomorphological characteristics of land, analytic hierarchy process (AHP) with expert’s judgement was used for ranking the sites. The criteria considered in AHP were geological features, i.e. lineament density, depth to bedrock and soil cover; geomorphological features, i.e. drainage density, slope, landforms and land use/land cover; and water table level fluctuation. The site P5 with maximum flow accumulation and sandstone rock formation was ranked first. The site P1, where catchment has well-developed drainage and geological formation shows rock with secondary porosity, was ranked second.  相似文献   

18.
Groundwater and surface water samples from 47 locations (28 groundwater, 10 tanks and 9 stream channel) were collected during the pre-monsoon (May–June) and post-monsoon season (November) from Chinnaeru River basin. Chinnaeru River basin is situated 30 km east of Hyderabad City and its area covers 250 km2 and falls in the Survey of India Toposheet No. 56 K/15. The extensive agricultural, industrial and urbanization activities resulted in the contamination of the aquifer. To study the contamination of groundwater, water samples were collected from an area and analyzed for major cations and anions. Various widely accepted methods such as salinity, sodium absorption ratio, Kelly’s ratio, residual sodium carbonate, soluble sodium percentage, permeability index and water quality index are used to classify groundwater and surface water (tank and stream) for drinking as well as irrigation purposes. Besides this, Piper trilinear diagram, Wilcox diagram, Doneen’s classification and Gibb’s plot were studied for geochemical controls, and hydrogeochemistry of groundwater and surface water samples were studied.  相似文献   

19.
运用水化学方法,通过对祖厉河这一黄河上游重要支流的多次实地考察和采样,结合区域水文地质条件,对祖厉河流域水体盐分的空间变化特征进行分析,并揭示流域水体的演化过程。结果表明,流域水体TDS普遍较高,总体以咸水为主。水中阳离子以Na~+为主,阴离子则以Cl-、SO_4~(2-)为主。水化学类型方面,源区地下水以Mg-Ca-Na-HCO_3型水为主,河水则以Na-Mg-Cl-SO_4型水为主。流域内水体盐分主要来源于阳离子交替吸附作用、上游地下水淋滤地层盐分后以泉的形式向河流排泄以及河流径流过程中侵蚀两岸高盐分土壤或含盐地层。径流过程中,当地干旱的气候环境使水体进一步蒸发浓缩,这是流域内水体TDS进一步增高的外在水化学演化过程。总之,由于多种来源的盐分,特别是源区高TDS地下水排泄、流域内强烈的土壤侵蚀以及干旱的气候条件等多重作用过程,是祖厉河TDS显著增高失去水资源功能的主要机制。  相似文献   

20.
In north-eastern Algeria, the Seybouse River is an important source of water used mainly for irrigation of large agricultural areas extending from the Guelma region to Annaba city. Industrial activities in this region contribute substantial water pollution to the river and the groundwater. Based on the different sources of pollution, mapping of areas vulnerable to groundwater pollution has been accomplished by combining land use and data on groundwater levels. The resulting maps show that the most vulnerable areas are those with large industrial activities—in Meboudja, Bouchegouf and Guelma. Infiltration and runoff contribute to pollution, and the highest infiltration rate is generally observed in areas of agricultural and industrial activities. Pollution of the aquifers in this area is of concern. Mountains, such as the Edough and Gelaat Bou Sbaa, contribute high runoff that carries pollutants towards the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号