首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineering classification of rock masses for the design of tunnel support   总被引:63,自引:10,他引:63  
SummaryEngineering Classification of Rock Masses for the Design of Tunnel Support An analysis of some 200 tunnel case records has revealed a useful correlation between the amount and type of permanent support and the rock mass qualityQ, with respect to tunnel stability. The numerical value ofQ ranges from 0.001 (for exceptionally poor quality squeezing-ground) up to 1000 (for exceptionally good quality rock which is practically unjointed). The rock mass qualityQ is a function of six parameters, each of which has a rating of importance, which can be estimated from surface mapping and can be updated during subsequent excavation. The six parameters are as follows; theRQD index, the number of joint sets, the roughness of the weakest joints, the degree of alteration or filling along the weakest joints, and two further parameters which account for the rock load and water inflow. In combination these parameters represent the rock block-size, the interblock shear strength, and the active stress. The proposed classification is illustrated by means of field examples and selected case records.Detailed analysis of the rock mass quality and corresponding support practice has shown that suitable permanent support can be estimated for the whole spectrum of rock qualities. This estimate is based on the rock mass quality Q, the support pressure, and the dimensions and purpose of the excavation. The support pressure appears to be a function ofQ, the joint roughness, and the number of joint sets. The latter two determine the dilatency and the degree of freedom of the rock mass.Detailed recommendations for support measures include various combinations of shotcrete, bolting, and cast concrete arches together with the appropriate bolt spacings and lengths, and the requisite thickness of shotcrete or concrete. The boundary between self supporting tunnels and those requiring some form of permanent support can be determined from the rock mass qualityQ. With 8 Figures  相似文献   

2.
青藏高原东缘广泛发育着深大活动断裂带,强烈控制着高原东缘区域应力场。本文基于收集的178个点位1181组原位应力数据,通过数值模拟反演得出青藏高原东缘活动断裂影响下青藏高原东缘地应力场,结果表明,青藏高原地应力场呈现出明显的非均匀性特征,应力量值由西向东逐渐减小。然后,利用ArcGIS分析青藏高原东缘埋深100~2000 m岩爆及大变形趋势,岩爆集中产生于次级板块内部,岩爆范围基本不随深度变化;而大变形产生于次级板块边界,并随深度增加面积逐渐向板块内部扩大;岩爆及大变形风险等级随埋深呈现规律性变化。最后,通过二郎山隧道隧址区以及双江口水电站两个工程实例探讨了本研究在工程建设中对岩爆及大变形趋势预测的适用性,结果表明,本文给出的青藏高原东缘地下工程灾害趋势与基于强度应力比方法获得的岩爆倾向性以及工程实例中岩爆现象基本一致。  相似文献   

3.
王军祥  姜谙男 《岩土力学》2015,36(4):1147-1158
在实际隧道施工过程中,隧道开挖引起地下岩体应力重分布使得围岩的微裂纹扩展损伤,并伴随有塑性流动变形。在地下水环境中对于孔隙和微裂隙围岩介质受到应力作用时,在内部将产生高孔隙水压力影响岩石的力学性质,也改变了围岩的破坏模式。为了研究损伤引起的刚度退化和塑性导致的流动两种破坏机制的耦合作用,从弹塑性力学和损伤理论的角度出发,同时引入修正有效应力原理来考虑孔隙水压力的作用,建立基于Drucker-Prager屈服准则的弹塑性损伤本构模型;针对该本构模型推导了孔隙水压力作用下弹塑性损伤本构模型的数值积分算法-隐式返回映射算法,分别对预测应力返回到屈服面的光滑圆锥面或尖点奇异处两种可能的情况给出了详细的描述,隐式返回映射算法具有稳定性和准确性的特点;大多数弹塑性损伤模型中涉及参数多且不易确定的问题,采用反分析方法获得损伤参数,解决了损伤参数不易确定的难题;采用面向对象的编程方法,使用C++语言编制了弹塑性损伤本构求解程序,并对所建立的弹塑性损伤模型和所编程序进行了试验和数值两个方面的验证;最后将其在吉林抚松隧道工程中进行应用,模拟了塑性区和损伤区的发展变化。研究结果表明:所建立的弹塑性损伤本构模型能够较好地描述岩石的力学性能、塑性和损伤变化趋势,所编程序能够进行实际工程问题的模拟,对现场施工给予一定的指导。  相似文献   

4.
5.
输水隧洞流变-膨胀性围岩稳定性的有限元分析   总被引:1,自引:1,他引:0  
张玉军  唐仪兴 《岩土力学》2000,21(2):159-162
给出了一个流变 -膨胀性岩体的计算模型及有限元数值方法 ,着重计算分析了山西省引黄入晋工程某输水隧洞围岩的流变 -膨胀稳定性 ,据此得出了有益的结论  相似文献   

6.
岩体锚固效应及锚杆的解析本构模型研究   总被引:3,自引:0,他引:3  
朱训国  杨庆  栾茂田 《岩土力学》2007,28(3):527-532
利用Mohr-Coulomb、Hoek-Brown以及Duncan-Chang理论分别分析了块状和碎块状岩体锚固后的物理效应,通过分析认为,岩体锚固后可以有效地提高岩体的凝聚力和软弱结构面的抗剪强度,增强岩体的弹性模量,改善岩体的力学性质。通过对拉拔试验测试结果分析,在一定的假设条件下,推导了锚杆与注浆体或岩体耦合情况下的解析本构方程,并对其进行了参数分析,认为提高拉拔力、增大锚杆直径和锚固段长度可以有效地改善其锚固效果,并提出了锚固临界值的概念。在前人工作的基础上,利用提出的耦合解析本构模型建立了非耦合状态下锚杆的解析本构模型,通过计算认为,该解析模型是合理的。  相似文献   

7.
In this paper, an anisotropic strength criterion is established for jointed rock masses. An orientation distribution function (ODF) of joint connectivity, is introduced to characterize the anisotropic strength of jointed rock masses related to directional distributed joint sets. Coulomb failure condition is formulated for each plane of jointed rock masses by joint connectivity, where the friction coefficient and cohesion of the jointed rock mass are related to those of the intact rock and joint and become orientation dependent. When approximating joint connectivity by its second‐order fabric tensor, an anisotropic strength criterion is derived through an approximate analytical solution to the critical plane problem. To demonstrate the effects of joint distribution on the anisotropic strength of jointed rock masses, the failure envelopes are worked out for different relative orientations of material anisotropy and principal stress axes. The anisotropic strength criterion is also applied to wellbore stability analyses. It is shown that a borehole drilled in the direction of the maximum principal in situ stress is not always the safest due to the anisotropic strength of the jointed rock mass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
One of the primary geotechnical problems encountered during tunnel construction involves the inflow of groundwater into the tunnel. Heavy inflows make tunnel construction difficult and result in higher costs and delays in construction period. Therefore, it is essential to estimate the volume and rate of water inflow that is likely to appear in the tunnel. In this research, water inflow to the tunnel was calculated using numerical hydromechanical analysis. Effect of rock mass properties including fracture characteristics (normal and shear stiffness, hydraulic aperture, dilation angle, and fracture nonlinear behavior) on inflow was studied using a two-dimensional distinct element method. Results show that fracture properties play important role in inflow to the tunnel and must be considered in prediction of inflow to the tunnel. Based on numerical analysis results, inflow of groundwater into the tunnel increases with the increasing of normal and shear stiffness, dilation angle, and hydraulic aperture of rock mass fractures. The measured inflow with considering nonlinear fracture behavior was more than the calculated inflow with linear constitutive behavior.  相似文献   

9.
《岩土力学》2017,(9):2655-2661
岩石的单轴抗压强度可以通过相对简单且经济的方法直接测试得到,在岩土工程领域应用十分广泛。提出了一种确定岩石各向异性单轴抗压强度的经验公式。通过该经验公式对砂岩、千枚岩、板岩和页岩的各向异性单轴抗压强度数据进行了拟合。采用决定系数R~2、相对误差D_p和平均绝对相对误差AAREP这3种统计参数评价经验式的预测能力,结果表明,预测的单轴抗压强度与试验值吻合较好。基于包含274个各向异性单轴抗压强度的数据库,通过统计分析评价了经验公式的预测能力,并与3种常用方法的预测能力进行了对比。统计分析表明,仅有3个方位角(β分别为0°、30°和90°)的试验数据可用时,提出的经验式也能够很好地预测各向异性单轴抗压强度。  相似文献   

10.
李术才  王燕  李树忱 《岩土力学》2006,27(Z1):279-282
海底隧道岩石覆盖层厚度是海底隧道选线中的关键因素,其确定方法目前还没有统一的标准。结合海底隧道岩石覆盖层厚度确定中的关键因素,应用隧道设计常用的工程类比方法,借鉴已有的海底隧道工程或类似工程的设计经验对隧道岩石覆盖层厚度的初步确定进行了研究,并将其应用于实际工程,得出合理的隧道岩石覆盖层厚度的范围。研究方法对同类工程的初步设计有参考价值。  相似文献   

11.
Lee  Ya-Ting  Ma  Kuo-Fong  Wang  Yu-Ju  Wen  Kuo-Liang 《Natural Hazards》2015,75(2):1779-1793
Natural Hazards - The duration of strong shaking is particularly important for assessing building performance, potential landslides and liquefaction hazards. The results of this investigation can...  相似文献   

12.
朱泽奇  盛谦  梅松华  张占荣 《岩土力学》2009,30(10):3115-3121
基于显式有限差分程序FLAC3D,针对层状岩体建立了可以考虑其横观各向同性变形特性的遍布节理模型。通过FLAC3D程序的预留接口导入程序,将该改进的遍布节理模型中植入FLAC3D动态链接库。在此基础上进行了层状岩体变形与强度各向异性特性的研究,最后将该模型应用于龙滩水电站巨型地下硐室群的层状岩体围岩变形及破裂特征分析。研究表明,围岩变形主要表现为岩层同性面内的变形,其左右边墙变形不对称性主要受断层切割控制;围岩破坏型式以剪切破坏为主,其中岩体整体破坏受断层控制,表现为中低应力条件下的拉剪或压剪破坏;而开挖引起的岩层破坏受制于陡倾角层状岩体结构,表现为层间错动引起的剪切破坏。  相似文献   

13.
李彦恒  冯利  罗立平 《岩土力学》2012,33(Z2):201-204
根据Hoek-Brown破坏准则和等面积原则,通过岩石力学试验数据和野外地质调查结果,算出工程岩体主要的力学参数,可用于地下工程的岩体分级。该方法能够较好地反映岩体的赋存条件和力学状态,对岩体的工程力学性质认识更加深入,为地下工程设计和施工支护提供更加科学、合理的依据。实践表明,相比于最常用的BQ分级法,文中方法在深埋地下工程中更加科学、适用  相似文献   

14.
公路隧道围岩变形监测及其应用   总被引:26,自引:0,他引:26  
以二郎山公路隧道施工过程的工程实践为依据,利用常规围岩变形监控量测和围岩变形跟踪监测系统及二次应力场测试,获取隧道围岩动态综合信息,为围岩分类、大变形预测、岩爆预测、优化二次支护时间及反分析等提供依据,是岩土工程信息化设计、施工的重要手段。  相似文献   

15.
Microplane damage model for jointed rock masses   总被引:1,自引:0,他引:1  
The paper presents a new microplane constitutive model for the inelastic behavior of jointed rock masses that takes into account the mechanical behavior and geometric characteristics of cracks and joints. The basic idea is that the microplane modeling of rock masses under general triaxial loading, including compression, requires the isotropic rock matrix and the joints to be considered as two distinct phases coupled in parallel. A joint continuity factor is defined as a microplane damage variable to represent the stress‐carrying area fraction of the joint phase. Based on the assumption of parallel coupling between the rock joint and the rock matrix, the overall mechanical behavior of the rock is characterized by microplane constitutive laws for the rock matrix and for the rock joints, along with an evolution law for the microplane joint continuity factor. The inelastic response of the rock matrix and the rock joints is controlled on the microplane level by the stress–strain boundaries. Based on the arguments enunciated in developing the new microplane model M7 for concrete, the previously used volumetric–deviatoric splits of the elastic strains and of the tensile boundary are avoided. The boundaries are tensile normal, compressive normal, and shear. The numerical simulations demonstrate satisfactory fits of published triaxial test data on sandstone and on jointed plaster mortar, including quintessential features such as the strain softening and dilatancy under low confining pressure, as well as the brittle–ductile transition under higher confining pressure, and the decrease of jointed rock strength and Young's modulus with an increasing dip angle of the joint. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
《Engineering Geology》2007,89(1-2):129-143
The objective of this paper is to present a new rock mass classification system which can be appropriate for rock slope stability assessment. In this paper an evaluation model based on combining the Analytic Hierarchy Process (AHP) and the Fuzzy Delphi method (FDM) was presented for assessing slope rock mass quality estimates. This research treats the slope rock mass classification as a group decision problem, and applies the fuzzy logic theory as the criterion to calculate the weighting factors. In addition, several rock slopes of the Southern Cross-Island Highway in Taiwan were selected as the case study examples. After determining the slope rock mass quality estimates for each cases, the Linear Discriminant Analysis (LDA) model was used to classify those that are stable or not, and the discriminant functions which can determine failure probability of rock slopes were carried out by the LDA procedure. Afterward, the results may be compared with slope unstable hazards occurring actually, and then the relation and difference between them were discussed. Results show that the proposed method can be used to assess the stability of rock slopes according to the rock mass classification procedure and the failure probability in the early stage.  相似文献   

17.
针对富水破碎地层注浆治理过程中传统水泥类材料难以实现注浆加固和堵水同步进行的难题,以硫铝酸盐水泥熟料和钢渣微粉为主要原材,成功制备了一种水泥基复合注浆材料(CGM)。通过与传统水泥材料进行性能对比试验,采用扫描电镜和X射线测试手段,分析了CGM材料制备工艺、组分含量和浆液制备条件对材料性能的作用规律,并检验了CGM材料的工程适用性。结果表明:CGM材料宜采用混合粉磨制备工艺,可显著提高其水化活性,且粉磨时间应不超过45 min。钢渣微粉含量越高,水灰比越大,结石体强度越低,凝结时间越长,水灰比超过1.2:1时,结石体后期会出现干缩。与传统水泥材料相比,CGM材料浆液凝结时间与黏度的环境敏感度低,具有显著的工程适用性和性能优越性。  相似文献   

18.
An empirically derived Redlich-Kwong type of equation of state (ERK) is proposed for H2O, expressing a, the term related to the attraction between the molecules, as a pressure-independent function of temperature, and b, the covolume, as a temperature-independent function of pressure. The coefficients of a(T) and b(P) were derived by least squares non-linear regression, using P-V-T data given by Burnham et al. (1969b) and Rice and Walsh (1957) in conjunction with more precise recent data obtained by Tanishita et al. (1976), Hilbert (1979) and Schmidt (1979): $$a(T) = 1.616 x 10^8 - 4.989 x 10^4 T - 7.358 x 10^9 T^{ - 1} $$ and $$ = \frac{{1 + 3.4505x 10^{--- 4} P + 3.8980x 10^{--- 9} P^2 - 2.7756x 10^{--- 15} P^3 }}{{6.3944x 10^{--- 2} + 2.3776x 10^{--- 5} + 4.5717x 10^{--- 10} P^2 }}$$ , where T is expressed in Kelvin and P in bars. The ERK works very well at upper mantle conditions, at least up to 200 kbar and 1,000 °C. At subcritical conditions and those somewhat above the critical point, it still reproduces the molar Gibbs energy, \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) , with a maximum deviation of 400 joules. Thus, for the purpose of calculation of geologically interesting heterogeneous equilibria, it predicts the thermodynamic properties of H2O well enough. The values of molar volume, \(\tilde V_{{\text{H}}_{\text{2}} {\text{O}}} \) , and \(\tilde G_{{\text{H}}_{\text{2}} {\text{O}}} \) are tabulated in the appendix over a considerable P-T range. A FORTRAN program generating these functions as well as a FORTRAN subroutine for calculating the fugacity values, \(f_{{\text{H}}_{\text{2}} {\text{O}}} \) for incorporation into existing programs, are available upon request.  相似文献   

19.
Fuzzy set approaches to classification of rock masses   总被引:6,自引:0,他引:6  
A. Aydin   《Engineering Geology》2004,74(3-4):227-245
Rock mass classification is analogous to multi-feature pattern recognition problem. The objective is to assign a rock mass to one of the pre-defined classes using a given set of criteria. This process involves a number of subjective uncertainties stemming from: (a) qualitative (linguistic) criteria; (b) sharp class boundaries; (c) fixed rating (or weight) scales; and (d) variable input reliability. Fuzzy set theory enables a soft approach to account for these uncertainties by allowing the expert to participate in this process in several ways. Hence, this study was designed to investigate the earlier fuzzy rock mass classification attempts and to devise improved methodologies to utilize the theory more accurately and efficiently. As in the earlier studies, the Rock Mass Rating (RMR) system was adopted as a reference conventional classification system because of its simple linear aggregation.

The proposed classification approach is based on the concept of partial fuzzy sets representing the variable importance or recognition power of each criterion in the universal domain of rock mass quality. The method enables one to evaluate rock mass quality using any set of criteria, and it is easy to implement. To reduce uncertainties due to project- and lithology-dependent variations, partial membership functions were formulated considering shallow (<200 m) tunneling in granitic rock masses. This facilitated a detailed expression of the variations in the classification power of each criterion along the corresponding universal domains. The binary relationship tables generated using these functions were processed not to derive a single class but rather to plot criterion contribution trends (stacked area graphs) and belief surface contours, which proved to be very satisfactory in difficult decision situations. Four input scenarios were selected to demonstrate the efficiency of the proposed approach in different situations and with reference to the earlier approaches.  相似文献   


20.
A practical approach is proposed in this paper for the reliability assessment of rock tunnel excavations using the moving least squares method (MLSM) and the uniform design. The failure probability is computed by the first-order and the second-order reliability method (FORM/SORM), which is based on the generated MLSM response surface (MLSM-RS) via an iterative algorithm. The proposed approach is first implemented in the analysis of a circular tunnel that consists of three limit state functions to illustrate the efficiency and accuracy of the approach. Then, the method is applied to a non-circular tunnel to demonstrate the feasibility and validity of the method for practical problems, in which numerical procedures are commonly employed to solve the implicit limit state functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号