首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study site lies on a karst system in the Pyrénées (France) that crosses the Urgonian limestones. Organic matter was dumped on the west bank of the River Vert d’Arette, which polluted a spring (the Fontaine d’Orbe) situated on the east bank. Electrical resistivity tomography was utilised in order to understand the geometry of this karst outlet. After tests with the pole-pole array, the ideal electrode spacing was found to be less than 3 m. A conduit, a little less than 10 m wide, was discovered, which proved to be the terminal conduit of the karst system. It was established that the conduit traverses both banks of the River Vert d’Arette, thus presenting a hydraulic link between the two sides. Moreover, this conduit, which is totally submerged, passes under the riverbed and goes upwards to the spring. In addition to the geophysical measurements, hydrogeological measurements and observations were made. Based on the characterisation of the geometry of the karst network’s terminal conduit, and the fact that is completely full of water and inclined, it is concluded that the Fontaine d’Orbe spring is of the Vauclusian variety.  相似文献   

2.
A stochastic discrete-fracture model was used by Cacas et al.a,b to interpret flow measurements and transport experiments in a fractured crystalline rock mass at Fanay-Augères. They considered continuum models to be incapable of properly interpreting small-scale measurements or tracer tests in fractured systems, which, in their view, require three-dimensional modeling of numerous discrete channels; in their opinion, continuum modeling applies only to average flow on a relatively large scale. Cacas et al. considered their discrete fracture model to have been validated by its demonstrated ability to reproduce selected experimental results. In this paper, flow and transport at Fanay-Augères are modeled by viewing the fractured rock as a stochastic continuum in a manner originally proposed by Neumanc,d. The stochastic continuum approach obviates the need for detailed information about fracture geometry or assumptions about how individual fractures control flow and transport. All it requires is the delineation of a few dominant features, which can be embedded into the stochastic continuum model as heterogeneous porous slabs. Though a fault zone has been identified at the Fanay-Augères experimental site, it has been modeled neither by Cacas et al. nor in this paper. In fact, in this paper, a larger selection of experimental results than those considered by Cacas et al. are reproduced merely by modeling the rock as a statistically homogeneous continuum in two dimensions. These results demonstrate that a continuum approach may be well suited for the analysis of flow and transport in fractured rock. This does not constitute a validation of the continuum approach, just as the results of Cacas et al. fall short of validating the discrete fracture approach. Instead, the two sets of results illustrate jointly the well-established principle that an open system, especially one as complex as fractured hydrogeologic environments tend to be, cannot be described uniquely on the basis of sparse data and need not be described in great detail to capture its salient behavior by a model.a Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990a) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation. 1. The flow model. Water Resour Res 26(3):479–489b Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990b) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation. 2. The transport model. Water Resour Res 26(3):491–500c Neuman SP (1987) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts, in Rock Mechanics. In: Farmer IW, Daemen JJK, Desai CS, Glass CE, Neuman SP (eds) Proceedings of the 28th U.S. Symposium, Tucson, Arizona. Balkema, Rotterdam, pp 533–561d Neuman SP (1988) A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, September, Arbetsrapport 88–37, 39 pp  相似文献   

3.
For good management of groundwater resources, and to comply with European and national regulations, a detailed understanding of an aquifer’s hydraulic setting is required. In order to better characterize a sandy aquifer that is affected by diffuse pollution (Brévilles spring catchment, Val d’Oise, France), and to quantify the transfer time in the saturated zone, a multi-tracer test involving a new technique, the ‘finite volume point dilution method’, has been performed in natural flow conditions. In November 2005, injections of four different tracers took place in four piezometers involving different locations and depths in the aquifer. Recovery of the tracers was observed at two different places near the aquifer outlet. A particularly long and unusual monitoring exercise (27 months) demonstrated the existence of several different velocities within the sandy layer, which seems to be linked to the decrease of hydraulic conductivity with depth. The new insight and parameter quantification brought by interpretation of these tests contribute to a better characterization of the saturated zone. The particularly long-term monitoring exercise also gives new information to understand and forecast the trend and persistence of groundwater contamination by pesticides in the catchment.  相似文献   

4.
This paper focuses on the relationship between the karst aquifers and the Hérault River (southern France) as a function of hydrologic conditions. The combination of major and trace element, and Sr and Pb isotopes determined on dissolved load in karstic springs makes it possible to identify a dynamic scheme of the hydrology of the karstic area.In the headwaters part of this area, the Sourcettes Spring is fed by an interrupted stream that infiltrates at the basement-sedimentary cover contact. Internal geochemical processes are also pointed out: (1) water–rock interactions during underground circulation, and (2) water originating from different layers of the aquifer may show different chemistry depending on the hydrological conditions. The Vernède Spring, is fed by a second water supply during high flows (previously considered as unconnected). Finally, the Cent-Fonts Springs have been confirmed to be fed by the Buège interrupted stream.Pb isotopes on the dissolved and particulate loads of the river samples make it possible to discriminate the natural (local rocks) versus anthropogenic (mining district and road traffic) Pb sources. The Pb isotope investigations on karstic water make it possible to differentiate between neighboring springs presenting identical Sr isotope and element ratios, and to point out different underground circulation.
Resumen Este artículo trata de la relación río-acuífero kárstico en la cuenca de Hérault (Francia), en función de las condiciones hidrológicas. La combinación de elementos principales, elementos traza, e isótopos de estroncio y plomo en muestras de manantiales kársticos permite construir un esquema dinámico de la zona.El manantial de Sourcettes, en la parte alta de la región, está alimentado por una corriente interrumpida que se infiltra a través la cubierta sedimentaria del lecho. También, se apunta a los procesos internos geoquímicos: (1) interacciones roca-acuífero, (2) aguas procedentes de capas diferentes del acuífero, dependiendo de las condiciones hidrológicas. El manantial de Vernède, en el sector oriental de la cuenca, se nutre de una segunda fuente de agua en períodos de aguas altas, que anteriormente se consideraba desconenctada. Finalmente, se ha confirmado que los manantiales de Cent-Fonts captan las aguas del curso interrumpido del Buège.Los isótopos de plomo, tanto en fase disuelta como en suspensión de muestras de río, permiten discriminar entre orígenes naturales (rocas naturales) y antrópicos (minería y tráfico) de este elemento. Las investigaciones en aguas kársticas llevan a diferenciar entre manantiales vecinos que tienen relaciones de isótopos de estroncio idénticas, así como a proponer circulaciones distintas en el acuífero por drenaje o por mineralización no diseminada del plomo.

Résumé Cet article s'intéresse à la relation entre le karst et une rivière dans le bassin de l'Hérault (France), en fonction des conditions hydrologiques. La combinaison des éléments majeurs, des traces et des isotopes de Sr et Pb déterminés dans la charge dissoute de sources karstiques permet de construire un schéma dynamique de la région karstique.Dans la partie la plus haute de cette région, la source des Sourcettes est alimentée par un cours d'eau qui s'infiltre au contact de la série sédimentaire sur le socle. Des processus géochimiques sont également mis en évidence: (1) des interactions eau-roche au cours du trajet souterrain, (2) de l'eau provenant de différents niveaux de l'aquifère en fonction des conditions hydrologiques. Dans la partie orientale du bassin, la source Vernède reçoit une seconde alimentation lors des fortes crues, précédemment considérée comme n'étant pas connectée. Finalement, on confirme que la source des Cent-Fonts est alimentée par les pertes de la rivière de la Buèges.Les isotopes du Pb dans les charges dissoute et solide des échantillons de rivières ont conduit à faire la distinction entre les sources naturelle (roches locales) et anthropique (mines et trafic routier). Les études sur les isotopes du Pb dans les eaux karstiques permettent de différencier les sources voisines présentant des rapports d'éléments et de signatures isotopiques du Sr identiques, et à distinguer différentes circulations souterraines drainant ou non des minéralisations disséminées de Pb.

  相似文献   

5.
Tritium?Chelium groundwater dating was carried out in a trichloroethylene (TCE)-contaminated valley-fill aquifer system in Quebec, Canada, where a numerical groundwater flow model was developed. Forty seven discrete groundwater and dissolved gas samples were obtained along two flow paths originating from known TCE source zones whose related plumes converge down gradient to form a single plume. Sampling points in monitoring wells were projected onto vertical sections showing particle tracks along the two flow paths. At these points, simulated advective ages obtained from particle tracking were matched to tritium?Chelium ages using different porosity values; the best match was 0.35. Ages were also obtained above and below a prodeltaic silty aquitard in a portion of the aquifer where some source zones are located, which provide groundwater and TCE transit times through the aquitard as well as a mean vertical hydraulic conductivity that agrees with previous estimates used in the model. In certain locations, anomalously old ages associated with high terrigenic 4He indicate areas where groundwater from the underlying proglacial unit flows upward into the deltaic sand aquifer through aquitard windows. Upflow locations correspond with increased TCE concentrations, suggesting significant TCE provenance through the proglacial unit originating from a previously unrecognized TCE source zone.  相似文献   

6.
In the framework of the management of karstic aquifers, geophysical reconnaissance can be used to locate conduits and caves, and to characterise the surrounding limestone matrix. Suitable characterisation of heterogeneities in the karstic environment is, however, challenging for ground-based geophysical methods. The present article describes the results, and evaluates the response and accuracy of combined geophysical measurements carried out at the Poumeyssen test site in France, involving electrical resistivity imaging (ERI), magnetic resonance sounding (MRS), “mise-à-la-masse” electrical mapping, and seismic tomography. This site provides the opportunity to study a relatively wide, shallow, water-filled conduit whose location and shape are known from topographic work carried out by cave divers. Seismic and MRS provided the exact location and width of the conduit, to within a few meters. The seismic and electrical data suggest that the limestone medium surrounding the conduit is not homogeneous.  相似文献   

7.
The Salt Basin is a semiarid hydrologically closed drainage basin in southern New Mexico, USA. The aquifers in the basin consist largely of Permian limestone and dolomite. Groundwater flows from the high elevations (~2,500 m) of the Sacramento Mountains south into the Salt Lakes, which are saline playas. The aquifer is ‘underfit’ in the sense that depths to groundwater are great (~300 m), implying that the aquifer could transmit much more water than it does. In this study, it is speculated that this characteristic is a result of a geologically recent reduction in recharge due to warming and drying at the end of the last glacial period. Water use is currently limited, but the basin has been proposed for large-scale groundwater extraction and export projects. Wells in the basin are of limited utility for hydraulic testing; therefore, the study focused on environmental tracers (major-ion geochemistry, stable isotopes of O, H, and C, and 14C dating) for basin analysis. The groundwater evolves from a Ca–HCO3 type water into a Ca–Mg (Na) – HCO3–Mg (Cl) water as it flows toward the center of the basin due to dedolomitization driven by gypsum dissolution. Carbon-14 ages corrected for dedolomitization ranged from less than 1,000 years in the recharge area to 19,000 years near the basin center. Stable isotopes are consistent with the presence of glacial-period recharge that is much less evaporated than modern. This supports the hypothesis that the underfit nature of the aquifer is a result of a geologically recent reduction in recharge.  相似文献   

8.
9.
The geophysical characterization of a previously unstudied endorheic karstic system is presented. The studied area, known as the Esta?a Lakes, is located in the Pyrenean Marginal Sierras, northern Spain. The Esta?a Lakes are a set of natural water ponds on a bedrock of Triassic evaporites, lutites and carbonates. This wetland is included in the Natura 2000 European network of nature protection areas as a “Site of Community Importance”. Two geophysical techniques were used, magnetic resonance sounding (MRS) and electrical resistivity tomography (ERT), to map the subsurface geology and characterize the aquifer layers and the hydraulic links between the aquifers and lakes. The geophysical data were integrated with the surface geology and data from six boreholes. Ten electrical profiles were performed to identify the thickness of the units and lithological changes, whereas the MRS was used to determine the top of the saturated zone. As result, the aquifer in the Esta?a Lakes system and surrounding area has been identified as Middle Triassic carbonates, which does not correspond with the regional aquifer in the area (Upper Cretaceous and Eocene). This work shows the power of geophysical methods in poorly understood and tectonically complex areas in addition to the standard aquifer tests to evaluate hydraulic properties.  相似文献   

10.
11.
The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21?×?106 m3/yr in 1970 to 104?×?106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer’s potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62?×?106 m3/yr), and (2) a further reduction in 2021 to 1?×?106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.  相似文献   

12.
13.
In the Gran Sasso fissured carbonate aquifer (central Italy), a long-term (2001–2007) spatio-temporal hydrochemical and 222Rn tracing survey was performed with the goal to investigate groundwater flow and water–rock interaction. Analyses of the physico-chemical parameters, and comparisons of multichemical and characteristic ratios in space and time, and subsequent statistical analyses, permitted a characterisation of the hydrogeology. At the regional scale, groundwater flows from recharge areas to the springs located at the aquifer boundaries, with a gradual increase of mineralisation and temperature along its flowpaths. However, the parameters of each group of springs may significantly deviate from the regional trend owing to fast flows and to the geological setting of the discharge spring areas, as corroborated by statistical data. Along regional flowpaths, the effects of seasonal recharge and lowering of the water table clearly cause changes in ion concentrations over time. This conceptual model was validated by an analysis of the 222Rn content in groundwater. 222Rn content, for which temporal variability depends on seasonal fluctuations of the water table, local lithology and the fracture network at the spring discharge areas, was considered as a tracer of the final stages of groundwater flowpaths.  相似文献   

14.
Multiphase flow processes in unsaturated cohesive soils are often affected by deformation due to swelling and shrinking as a result of varying water contents. This paper presents a model concept which is denoted ‘phenomenological’ in terms of the processes responsible for soil deformation, since the effects of deformation on flow and transport are only considered by constitutive relations that allow an adaptation of the hydraulic properties. This new model is validated in a detailed intercomparison study with two state-of-the-art models that are capable of explicitly describing the processes relevant for the deformation. A ‘numerical experiment’ with a state-of-the-art reference model is used to produce ‘measurement data’ for an inverse-modelling-based estimation of the model input parameters for the phenomenological concept.  相似文献   

15.
The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS?<?500 mg/L), Cl? lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl? values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition.  相似文献   

16.
Earth’s lithosphere is heterogeneous in rheology on a wide range of observation scales. When subjected to a tectonic deformation, the incurred flow field can vary significantly from one rheologically distinct element to another and the flow field in an individual element is generally different from the bulk averaged flow field. Kinematic and mechanical models for high-strain zones provide the relations between prescribed tectonic boundary conditions and the resulting bulk flow field. They do not determine how structures and fabrics observed on local and small scales form. To bridge the scale gap between the bulk flow field and minor structures, Eshelby’s formalism extended for general power-law viscous materials is shown to be a powerful means. This paper first gives a complete presentation of Eshelby’s formalism, from the classic elastic inclusion problem, to Newtonian viscous materials, and to the most general case of a power-law viscous inhomogeneity embedded in a general power-law viscous medium. The formulation is then implemented numerically. The implications and potential applications of the approach are discussed. It is concluded that the general Eshelby formalism together with the self-consistent method is a powerful and physically sound means to tackle large plastic deformation of Earth’s lithosphere.  相似文献   

17.
18.
Stream water chemistry is dependent on the physical, chemical and biological processes occurring in the watershed. Understanding the governing mechanism of the stream water chemistry in a watershed is the first step for the water quality management. The study area drains a total catchment area of 1.46 km^2 and consists of forest (80%), upland (15%) and rice paddy field (5%). The studied area has two distinctive bedrocks, quartzite and schist. We periodically collected the stream water samples at mainstream and tributaries and the pH, electrical conductivity (EC), alkalinity and the concentrations of cations and anions of the collected stream water samples were determined in the field and laboratory. The all collected water samples were nearly neutral and the EC and concentrations of Na, K, Ca, Sr, Si and HCO3 of the stream water samples collected from the schist terrain had greater values than those from the quartzite terrain. The mainstream running along the boundary of schist and quartzite terrains had the intermediate values of the tributaries. The stream water samples collected in and near the upland showed a high concentration of NO3^- than those of forest regardless the lithology. The stream pathway was also directly reflected on the chemistry of stream water. The stream water drained in the forest of quartzite terrain had the lowest values of alkalinity, EC and concentrations of cations and anions but the stream water drain in the upland of schist terrain had the highest values of EC and concentrations of cations and anions, especially NO3^-.  相似文献   

19.
In arid and semi-arid regions, the groundwater overexploitation caused drawdown in piezometric levels and a degradation of chemical water quality. That is why the groundwater monitoring needs a good comprehension of the hydrogeological aquifer properties. This is specially the case of Zéramdine–Béni Hassen deep aquifer (east-central Tunisia). Seismic profiles interpretation highlights the existence of the Zéramdine fault corridor, the Boumerdès anticline, the Moknine and Mahdia grabens that represent lateral boundaries for the study aquifer. The outcrop of the aquifer is located in the Zéramdine, Béni Hassen and Ain Ben Jannet regions, where two lithostratigraphic sections were realized. The piezometric study shows that the principal groundwater flow is from west to east. A secondary flow is from NW to SE. The hydrochemical study of 22 sample shows that the aquifer is characterized by freshwater, dominated by Na–Ca–Cl–SO4 facies. The salinity increase is from the west to the east, which coincides with the principal water flow direction. The integration of all results deduced from the hydrogeophysic, hydrodynamic and hydrochemical studies is developed to investigate hydrological processes of Zéramdine–Béni Hassen aquifer and consequently to propose a conceptual model, which will help to propose a rescue plan for the studied aquifer and to implement a spatial hydrogeological database using the global information system and then to characterize the complex aquifer system.  相似文献   

20.
The complication introduced by solid solutions in the analysis of infiltration-driven mineral reactions is that the mole fraction of tracer component i in fluid (X i) changes with reaction progress (ξ). The effect was incorporated into transport models for coupled fluid flow and mineral reaction by parameterizing the relation between X i and ξ. With specific reference to carbonation and hydration during regional metamorphism of the peridotite body in Val d’Efra, whose constituent minerals are all solid solutions, infiltration of a disequilibrium fluid produces a single sharp reaction front if rock is assumed uniform in composition. The reaction front separates completely unreacted rock downstream from rock upstream with ξ at a steady-state limit (ξss ≤ ξmax) that depends on input fluid composition (ξmax is the maximum possible value). Novel phenomena develop, however, if the flow medium, like the metaperidotite body, is composed of many small domains that differ in initial mineral modes and compositions but with X i homogenized at a spatial scale larger than the size of the domains (e.g., by diffusion). In this case, infiltration of a disequilibrium fluid produces up to as many different reaction fronts along the flow path as there are domains with 0 ≤ ξ < ξss in all domains except upstream from the slowest moving front where ξ = ξss in all domains. Measured values of ξ in the metaperidotite, (all 0 < ξ < ξmax) are best reproduced by down-temperature infiltration of a disequilibrium fluid with X\textCO2 =  0. 1 9 6 X_{{{\text{CO}}_{2} }} = \, 0. 1 9 6 into a multi-domain medium with uniform X\textCO2 X_{{{\text{CO}}_{2} }} at each spatial point along the flow path (homogenized across the domains at the m-scale by diffusion), and time-integrated fluid flux ≥1,836 mol fluid/cm2 rock. Results resolve the paradox of the widespread spatial distribution of reactants and products of infiltration-driven decarbonation/dehydration reactions in regional metamorphic terrains (which in the absence of solid solution and compositional domains indicate up-temperature flow) and the prediction of hydrodynamic models that regional metamorphic fluid flow normally is directed vertically upward and down temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号