首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
summary . The recent Indonesian earthquake (1977 August 19; Ms =8.0) makes possible a direct determination of Rayleigh-wave phase velocities at very long periods (200 to 300 s) over a pure shield path (College, Alaska-State College, Pennsylvania) by the two-station method. Results are in good agreement with previous models derived by regionalization of great-circle phase velocities and discussed in a previous paper (Okal, Paper I). Great-circle phase velocities computed at College and State College are correctly predicted by the models derived in Paper I, and further substantiate one of its main conclusions: no substantial structural differences between oceans and continents at depths greater than 240 km, are necessary to account for the presently available seismic data.  相似文献   

3.
4.
Upper-mantle flow beneath French Polynesia from shear wave splitting   总被引:1,自引:0,他引:1  
Upper-mantle flow beneath the South Pacific is investigated by analysing shear wave splitting parameters at eight permanent long-period and broad-band seismic stations and 10 broad-band stations deployed in French Polynesia from 2001 to 2005 in the framework of the Polynesian Lithosphere and Upper Mantle Experiment (PLUME). Despite the small number of events and the rather poor backazimuthal coverage due to the geographical distribution of the natural seismicity, upper-mantle seismic anisotropy has been detected at all stations except at Tahiti where two permanent stations with 15 yr of data show an apparent isotropy. The median value of fast polarization azimuths (N67.5°W) is parallel to the present Pacific absolute plate motion direction in French Polynesia (APM: N67°W). This suggests that the observed SKS fast polarization directions result mainly from olivine crystal preferred orientations produced by deformation in the sublithospheric mantle due to viscous entrainment by the moving Pacific Plate and preserved in the lithosphere as the plate cools. However, analysis of individual measurements highlights variations of splitting parameters with event backazimuth that imply an actual upper-mantle structure more complex than a single anisotropic layer with horizontal fast axis. A forward approach shows that a two-layer structure of anisotropy beneath French Polynesia better explains the splitting observations than a single anisotropic layer. Second-order variations in the measurements may also indicate the presence of small-scale lateral heterogeneities. The influence of plumes or fracture zones within the studied area does not appear to dominate the large-scale anisotropy pattern but may explain these second-order splitting variations across the network.  相似文献   

5.
6.
7.
I examined the relative influence of eight spatial characteristics on native plant diversity in 22 volcanic high islands of eastern Polynesia. The characteristics used as potential predictors in this study included island area, highest elevation, distance to the nearest continent, distance to the nearest archipelago, distance to the nearest similar island, index of isolation, distance to the largest and highest island of Tahiti, and distance to the “cyclonic alley.” Among characteristics studied, native plant diversity (indigenous and endemic species) was primarily linked with the island area and highest elevation of the islands. Contemporary cyclones were an important predictor of indigenous plant diversity in the remote islands surveyed. In the study area, this result suggests that cyclones, moving from the west Pacific Ocean basin to the eastern Polynesian islands, have provided more indigenous species to the remote high islands located close to the cyclonic alley. Isolation did not appear as a significant predictor of native plant diversity in the high islands surveyed, possibly due to a stepping-stone-island effect and the proximity of the cyclonic alley. These findings suggest that isolation could be tempered by a cyclonic-transport-flow effect in the study area, thus reducing the effective distance of the remote islands from the mainland source pool for seed dispersal.  相似文献   

8.
9.
10.
11.
We present a method for the retrieval of the phase velocities of surface-wave overtones. The 'single-station' method is successful for several Love and Rayleigh overtone branches (up to at least four) in mode-specific period ranges between 40 and 200 s. It uses mode-branch cross-correlation functions and relies on adjusting the phase and amplitude of the mode branches one at a time. A standard statistical optimization technique is used. We discuss in detail the a priori information that is added to stabilize the retrieval procedure. In addition, we present a technique to estimate the reliability of individual phase and amplitude measurements. The retrieval method and the technique to estimate reliabilities can be used together in a highly automated way, making the methods especially suited for studying the large volume of digital data now available.
We include several applications to synthetic and recorded waveforms. We will discuss in detail an experiment with 90 waveforms that have travelled along very similar paths from Vanuatu to California. For this path, we will present average overtone phase velocities and an average 1-D velocity structure.  相似文献   

12.
13.
A quantitative geomorphological study has been made on 27 river basins in Tahiti-Nui volcanic island (French Polynesia) to reconstruct the erosional evolution of a young oceanic island subjected to heavy tropical rainfall. Tahiti-Nui is composed of a main shield volcano cut by two huge landslides on each side of a main E–W rift zone. The northern landslide depression was rapidly buried by the construction of a second shield, the late activity of which overflowed the crest and then filled the southern landslide depression. The island is now volcanically inactive and is deeply dissected by erosion. The present geometries of the river basins are first compared using dimensionless parameters derived from a digital elevation model. The original volcanic surfaces are then reconstructed to estimate the volumes removed by erosion and determine the average rates of long-term erosion. The basins developed on the flanks of the main shield are wider, shallower, and gentler than the basins incising the post-landslide second shield, indicating a higher degree of evolution. Rainfall concentration on the windward (eastern) side of the island also contributed to increase the vertical lowering of the volcanic relief and the enlargement of the valleys. The magnitude of erosion, however, is neither directly linked with the age of the units incised nor with the differential amounts of rainfall. Erosion rates determined over the last 1 Myr range between 10− 3 km3 kyr− 1 and 0.25 km3 kyr− 1. The highest values occur in the basins incising the main E–W rift zone and/or the lateral rims of the northern and southern landslide depressions. Long-term dissection has thus been enhanced along the geological discontinuities of the eruptive system. Deep erosion was first constrained along the axis of the main E–W rift zone, where numerous dykes compartmentalize the volcanic structure into large unstable blocks. Dykes most probably acted as mechanical discontinuities along which shallow gravitational landslides recurrently occurred. Such mass-wasting episodes produced significant amounts of debris, partly preserved as highly indurated sedimentary breccias of various ages exposed at various locations. Subsequent dissection of Tahiti-Nui was enhanced to the north and to the south, leading to the rapid evolution of the Papenoo and Taharuu drainage systems over the last 500 kyr. Long-term dissection on Tahiti-Nui has been responsible for the removal of at least 350 km3 of volcanic material from the surface, and for the partial exhumation of a shallow intrusive complex partly composed of coarse-grained plutonic rocks (gabbros and syenites) in the central part of the eruptive system. Structurally controlled erosion is thus a key component of landscape evolution on such high-relief oceanic tropical islands.  相似文献   

14.
Summary. Surface wave behaviour in flat anisotropic structures is first illustrated by performing an exact computation on a simple two-layer model. The variational procedure of Smith & Dahlen is then used to compute the partial derivatives of surface wave phase velocities with respect to the elastic parameters in more realistic earth models. Linear relationships between the partial derivatives for a general anisotropic structure and those for a transversely isotropic structure are derived. When considering waves propagating in a fixed direction, there are only four independent derivatives for Rayleigh waves, and two for Love waves. To avoid the lack of resolution in an inverse method, we propose to use physically constrained models. These results are illustrated by using a model with hexagonal symmetry and a symmetry axis oriented either vertically or horizontally. Quasi-Love- and quasi-Rayleigh-wave partial derivatives are computed for both axis orientations. Modes up to the second overtone and periods ranging between 45 and 130 s have been considered. Finally, anomalies of phase velocity are computed in an oceanic model made of 1/6 oriented olivine crystals with horizontal or vertical preferred orientations of the a -axis.  相似文献   

15.
Summary. Application of both spatial filtering and multiple-frequency filtering techniques allows one to isolate a higher-mode surface wave and to find the regional variation of its dispersion. The method is applied to four sets of long-period records across the United States for intermediate earthquakes located in the New Hebrides. The first and second higher Rayleigh modes show lower phase velocities in the western part of the States than in the eastern part. Furthermore, an oceanic phase-velocity curve is determined between 50 and 130 s for the first higher Rayleigh mode on the full path across the Pacific Ocean.  相似文献   

16.
17.
Observations and origin of Rayleigh-wave amplitude anomalies   总被引:1,自引:0,他引:1  
This is a report of observations of amplitude anomalies of fundamental-mode Rayleigh waves ( R 1) between periods of 17 and 100  s. The anomalies are with respect to amplitudes predicted by Rayleigh-wave excitation for a reference earth model and catalogued centroid earthquake source parameters, such as are used in large-scale waveform inversions. The observations indicate that the amplitude anomalies are consistent for nearby recordings of the same event, while there is no obvious relation between the observed anomalies and the paths travelled by the waves. This is in contrast to Rayleigh-wave phase anomalies, which are consistent for similar propagation paths, and hence form the input in many inversions for along-path structure. The observations in this paper show that a similar inversion of intermediate-period amplitude anomalies for along- and near-path structure is not warranted without eliminating source effects, since the amplitude anomalies are dominated by scattering off near-source earth structure and by possible uncertainties in the source parameters. Sensitivity kernels that take the coupling between the moment tensor and displacement field into account demonstrate that Rayleigh-wave amplitude sensitivity is largest near the source. This report argues that the interaction between source-radiated Rayleigh waves and near-source earth structure may not be ignored in amplitude inversion procedures.  相似文献   

18.
Summary. We have determined the lateral distribution of Love-wave phase velocities in the Pacific for the periods 40, 67, 91 and 125 s. Application of the pure-path and spherical harmonic representation methods indicates that the velocities are primarily a function of the age of the seafloor. A comparison of the results from these two techniques indicates inherent modelling constraints in both methods. The pure-path method is limited by its a priori nature while the spherical harmonic approach is unsuitable in describing sharp lateral velocity gradients. To circumvent these limitations, we propose the sequential application of the pure-path and spherical harmonic methods. The sequential inversion separates the velocity distribution into two separate components; velocity as a function of the age of the oceanic plate and variations superimposed on this relationship. Application of this method demonstrates the presence of velocity anomalies which cannot be modelled by an age–velocity relationship. These anomalies are tentatively correlated with regions of anomalous seafloor depths and/or the presence of active hot-spots. In the central south Pacific, an area with numerous active hot-spots coincides roughly with a region of anomalously slow Love wave velocities. A method for determining the errors associated with the slowness distributions calculated by the spherical harmonic method is presented and provides a means for determining the resolvability of these features.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号