首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

2.
An interesting probe of the nature of dark energy is the measure of its sound speed, c s. We review the significance for constraining sound speed models of dark energy using large neutral hydrogen (H  i ) surveys with the square kilometre array (SKA). Our analysis considers the effect on the sound speed measurement that arises from the covariance of c s with the dark energy density, Ωde, and a time-varying equation of state,   w ( a ) = w 0+ (1 − a ) w a   . We find that the approximate degeneracy between dark energy parameters that arises in power spectrum observations is lifted through redshift tomography of the H  i -galaxy angular power spectrum, resulting in sound speed constraints that are not severely degraded. The cross-correlation of the galaxy and the integrated Sachs Wolfe (ISW) effect spectra contributes approximately 10 per cent of the information that is needed to distinguish variations in the dark energy parameters, and most of the discriminating signal comes from the galaxy auto-correlation spectrum. We also find that the sound speed constraints are weakly sensitive to the H  i bias model. These constraints do not improve substantially for a significantly deeper H  i survey since most of the clustering sensitivity to sound speed variations arises from   z ≲ 1.5  . A detection of models with sound speeds close to zero,   c s≲ 0.01,  is possible for dark energy models with   w ≳−0.9  .  相似文献   

3.
4.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

5.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

6.
This is the second in a series of papers dedicated to unveiling the mass structure and orbital content of a sample of flattened early-type galaxies in the Coma cluster. The ability of our orbit libraries to reconstruct internal stellar motions and the mass composition of a typical elliptical in the sample is investigated by means of Monte Carlo simulations of isotropic rotator models. The simulations allow a determination of the optimal amount of regularization needed in the orbit superpositions. It is shown that under realistic observational conditions and with the appropriate regularization, internal velocity moments can be reconstructed to an accuracy of ≈15 per cent; the same accuracy can be achieved for the circular velocity and dark matter fraction. In contrast, the flattening of the halo remains unconstrained. Regularized orbit superpositions are applied to a first galaxy in our sample, NGC 4807, for which stellar kinematical observations extend to  3  r eff  . The galaxy seems dark-matter dominated outside   r > 2  r eff  . Logarithmic dark matter potentials are consistent with the data, as well as NFW profiles, mimicking logarithmic potentials over the observationally sampled radial range. In both cases, the derived stellar mass-to-light ratio ϒ agrees well with independently obtained mass-to-light ratios from stellar population analysis. The achieved accuracy is  Δϒ≈ 0.5  . Kinematically, NGC 4807 is characterized by mild radial anisotropy outside   r > 0.5  r eff  , becoming isotropic towards the centre. Our orbit models hint at either a distinct stellar component or weak triaxiality in the outer parts of the galaxy.  相似文献   

7.
8.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

9.
We present a survey of bright optical dropout sources in two deep, multiwavelength surveys comprising 11 widely separated fields, aimed at constraining the galaxy luminosity function at   z ≈ 7  for sources at  5–10  L * ( z = 6)  . Our combined survey area is 225 arcmin2 to a depth of   J AB= 24.2  (3σ) and 135 arcmin2 to   J = 25.3  (4σ). We find that infrared data longwards of 2 μm are essential for classifying optical dropout sources, and in particular for identifying cool Galactic star contaminants. Our limits on the number density of high-redshift sources are consistent with current estimates of the Lyman break galaxy luminosity function at   z = 6  .  相似文献   

10.
We report the detection of a 5.8 Å– 104 s periodicity in the 0.5–10 keV X-ray light curve of the Seyfert galaxy IRAS 18325–5926, obtained from a 5-d ASCA observation. Nearly nine cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS 18325–5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS 18325–5926 is ∼ 6 Å– 106–4 Å– 107 M.  相似文献   

11.
The declining light curve of the optical afterglow of gamma-ray burst (GRB) GRB000301C showed rapid variability with one particularly bright feature at about t − t 0=3.8 d. This event was interpreted as gravitational microlensing by Garnavich, Loeb & Stanek and subsequently used to derive constraints on the structure of the GRB optical afterglow. In this paper, we use these structural parameters to calculate the probability of such a microlensing event in a realistic scenario, where all compact objects in the universe are associated with observable galaxies. For GRB000301C at a redshift of z =2.04, the a posteriori probability for a microlensing event with an amplitude of Δ m 0.95 mag (as observed) is 0.7 per cent (2.7 per cent) for the most plausible scenario of a flat Λ-dominated Friedmann–Robertson–Walker (FRW) universe with Ωm=0.3 and a fraction f ∗=0.2 (1.0) of dark matter in the form of compact objects. If we lower the magnification threshold to Δ m 0.10 mag, the probabilities for microlensing events of GRB afterglows increase to 17 per cent (57 per cent). We emphasize that this low probability for a microlensing signature of almost 1 mag does not exclude that the observed event in the afterglow light curve of GRB000301C was caused by microlensing, especially in light of the fact that a galaxy was found within 2 arcsec from the GRB. In that case, however, a more robust upper limit on the a posteriori probability of ≈5 per cent is found. It does show, however, that it will not be easy to create a large sample of strong GRB afterglow microlensing events for statistical studies of their physical conditions on microarcsec scales.  相似文献   

12.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

13.
The galaxy population at   z ≈ 6  has been the subject of intense study in recent years, culminating in the Hubble Ultra Deep Field (HUDF) – the deepest imaging survey yet. A large number of high-redshift galaxy candidates have been identified within the HUDF, but until now analysis of their properties has been hampered by the difficulty of obtaining spectroscopic redshifts for these faint galaxies. Our 'Gemini Lyman-Alpha at Reionization Era' (GLARE) project has been designed to undertake spectroscopic follow-up of faint  ( z ' < 28.5)  i '-drop galaxies at   z ≈ 6  in the HUDF. In a previous paper we presented preliminary results from the first 7.5 h of data from GLARE. In this paper we detail the complete survey. We have now obtained 36 h of spectroscopy on a single GMOS slitmask from Gemini-South, with a spectral resolution of  λ/ΔλFWHM≈ 1000  . We identify five strong Lyα emitters at   z > 5.5  , and a further nine possible line emitters with detections at lower significance. We also place tight constraints on the equivalent width of Lyα emission for a further ten i '-drop galaxies and examine the equivalent width distribution of this faint spectroscopic sample of   z ≈ 6  galaxies. We find that the fraction of galaxies with little or no emission is similar to that at   z ≈ 3  , but that the   z ≈ 6  population has a tail of sources with high rest-frame equivalent widths. Possible explanations for this effect include a tendency towards stronger line emission in faint sources, which may arise from extreme youth or low metallicity in the Lyman-break population at high redshift, or possibly a top-heavy initial mass function.  相似文献   

14.
We make use of three-dimensional clustering analysis, inertia tensor methods, and the minimal spanning tree technique to estimate some physical and statistical characteristics of the large-scale galaxy distribution and, in particular, of the sample of overdense regions seen in the Las Campanas Redshift Survey (LCRS). Our investigation provides additional evidence for a network of structures found in our core sampling analysis of the LCRS : a system of rich sheet-like structures, which in turn surround large underdense regions criss-crossed by a variety of filamentary structures.
We find that the overdense regions contain ∼40–50 per cent of LCRS galaxies and have proper sizes similar to those of nearby superclusters. The formation of such structures can be roughly described as a non-linear compression of protowalls of typical cross-sectional size ∼ 20–25  h −1 Mpc; this scale is ∼5 times the conventional value for the onset of non-linear clustering – to wit, r 0, the autocorrelation length for galaxies.
The comparison with available simulations and theoretical estimates shows that the formation of structure elements with parameters similar to those observed is presently possible only in low-density cosmological models, Ωm h ∼0.2–0.3, with a suitable large-scale bias between galaxies and dark matter.  相似文献   

15.
We use very large cosmological N -body simulations to obtain accurate predictions for the two-point correlations and power spectra of mass-limited samples of galaxy clusters. We consider two currently popular cold dark matter (CDM) cosmogonies, a critical density model ( τ CDM) and a flat low density model with a cosmological constant (ΛCDM). Our simulations each use 109 particles to follow the mass distribution within cubes of side 2  h −1 Gpc ( τ CDM) and 3  h −1 Gpc (ΛCDM) with a force resolution better than 10−4 of the cube side. We investigate how the predicted cluster correlations increase for samples of increasing mass and decreasing abundance. Very similar behaviour is found in the two cases. The correlation length increases from     for samples with mean separation     to     for samples with     The lower value here corresponds to τ CDM and the upper to ΛCDM. The power spectra of these cluster samples are accurately parallel to those of the mass over more than a decade in scale. Both correlation lengths and power spectrum biases can be predicted to better than 10 per cent using the simple model of Sheth, Mo & Tormen. This prediction requires only the linear mass power spectrum and has no adjustable parameters. We compare our predictions with published results for the automated plate measurement (APM) cluster sample. The observed variation of correlation length with richness agrees well with the models, particularly for ΛCDM. The observed power spectrum (for a cluster sample of mean separation     ) lies significantly above the predictions of both models.  相似文献   

16.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

17.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

18.
The Sc galaxy M 99 in the Virgo Cluster has been strongly affected by tidal interactions and recent close encounters, responsible for an asymmetric spiral pattern and a high star formation rate. Our XMM–Newton study shows that the inner disc is dominated by hot plasma at kT ≈ 0.30 keV, with a total X-ray luminosity of ≈1041 erg s−1 in the 0.3–12 keV band. At the outskirts of the galaxy, away from the main star-forming regions, there is an ultraluminous X-ray source (ULX) with an X-ray luminosity of ≈2 × 1040 erg s−1 and a hard spectrum well fitted by a power law of photon index Γ≈ 1.7. This source is close to the location where a massive H  i cloud appears to be falling on to the M 99 disc at a relative speed of >100 km s−1. We suggest that there may be a direct physical link between fast cloud collisions and the formation of bright ULXs, which may be powered by accreting black holes with masses ∼100 M. External collisions may trigger large-scale dynamical collapses of protoclusters, leading to the formation of very massive (≳200 M) stellar progenitors; we argue that such stars may later collapse into massive black holes if their metal abundance is sufficiently low.  相似文献   

19.
In this paper we have extended the entropy-driven model of cluster evolution developed by Bower in order to be able to predict the evolution of galaxy clusters for a range of cosmological scenarios. We have applied this model to recent measurements of the evolution of the L x− T normalization and X-ray luminosity function in order to place constraints on cosmological parameters. We find that these measurements alone do not select a particular cosmological framework. An additional constraint is required on the effective slope of the power spectrum to break the degeneracy that exists between this and the background cosmology. We therefore include a theoretical calculation of the Ω0 dependence on the power spectrum, based on the cold dark matter paradigm, which infers Ω0<0.55 (0.1<Ω0<0.7 for Ω00=1), at the 95 per cent confidence level. Alternatively, an independent measurement of the slope of the power spectrum from galaxy clustering requires Ω0<0.6 (Ω0<0.65 for Ω00=1), again to 95 per cent confidence. The rate of entropy evolution is insensitive to the values of Ω0 considered, although it is sensitive to changes in the distribution of the intracluster medium.  相似文献   

20.
We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Lambda cold dark matter (ΛCDM) model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity–metallicity and the stellar mass–metallicity (LZR and MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, M c≈ 3 × 1010 M, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z ∼ 3, with a very weak evolution of its metallicity content. The value and role played by M c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. Our findings suggest that systems with stellar masses smaller than M c are responsible for the evolution of this relation at least from z ≈ 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at   z ≥ 2  , showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z ∼ 3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify M c since, from   z = 3  this stellar mass is found in systems with circular velocities larger than 100 km s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号