首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a model, which describes the propagation of acoustic impulses produced by flight of rockets through a model terrestrial atmosphere, and effect of these impulses onto the ionosphere above a rocket. We show, that experimentally observed ionospheric disturbances with duration about 300 s cannot be explained by effect of acoustic impulses onto the ionosphere. We have calculated parameters of a blast wave produced by launch vehicle on the ionospheric heights. It was shown that the blast wave is intense and this wave can generate great disturbance of electron density. The disturbance of electron density can exceed the ambient electron density in 2.6 times. We supposed that the observed ionospheric disturbances might be produced by propagation of delayed magnetoacoustic wave, which, in turn, was produced by the blast wave.  相似文献   

2.
极区电离层加热的数值模拟与实验对比   总被引:7,自引:5,他引:2       下载免费PDF全文
大功率无线电波能加热电离层等离子体,可以引起电离层电子温度和密度的扰动,实现电离层的人工变态.从电子的连续性方程、动量方程和能量方程出发,我们给出了地面人工大功率无线电波加热电离层的数值模型.通过对方程的数值求解,计算了极地电离层条件下,电子温度、电子密度的加热效应,讨论了泵波参数对加热效应的影响.研究结果表明,电子温度几乎在整个高度上表现为一致性的幅度增强,且在反射高度附近形成温度增强峰很平缓.电子密度在峰上高度附近形成密度谷,谷两侧存在密度增强.加热效应基本随加热功率的增大而增大,随加热频率的增大而减小.使用我国2008年1月在挪威进行的电离层加热实验的电离层参量作为仿真初值,对6个O波加热时刻进行了数值仿真,仿真结果与实验观测基本保持一致.  相似文献   

3.
The interaction between the Earth’s ionosphere and magnetosphere in a situation when artificial disturbances are generated in the F region of the auroral ionosphere with the EISCAT/Heating facility is studied. An experiment was performed in the daytime when the facility effective radiated power changed in a stepwise manner. Wavelike disturbances with periods of (130–140) s corresponding to Pc4 pulsations were simultaneously registered by the method of bi-static backscatter and with ground magnetometers. The variations in the Doppler frequency shift were correlated with the changes in the facility power. Incoherent scatter radar measurements at a frequency of 930 MHz (Tromsö) and numerical calculations were used in an analysis. It has been indicated that the ionospheric drift of small-scale artificial ionospheric irregularities was modulated by magnetospheric Alfvén waves. The possible effect of powerful HF radioemission on the Alfvén wave amplitude owing to the modification of the magnetospheric resonator ionospheric edge reflectivity and the generation of an outgoing Alfvén wave above the region where the ionospheric conductivity is locally intensified has been considered.  相似文献   

4.
A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100ms–1), while the western beams detect lower velocities and higher spectral widths (above 200ms–1). The more distant of the two channels has only one spectral signature with velocities above the ionacoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate) electric field conditions.  相似文献   

5.
利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动   总被引:2,自引:1,他引:1       下载免费PDF全文
海平面的海啸波会产生大气重力波进而引发电离层扰动.本文利用日本GPS总电子含量数据来探测2011年3月11日Tohoku海啸引发的电离层扰动.观测结果表明,在日本上空的电离层中存在两种重力波信号,分别由海平面的海啸波以及地震破裂过程产生.地震产生的电离层重力波分布在震中周围(包括海洋上空以及远离海洋的区域),而海啸引发的电离层重力波主要分布在海洋上空.地震产生的电离层重力波具有不同的水平速度,包括约210 m·s-1以及170 m·s-1,其频率为1.5 mHz;而海啸引发的电离层重力波水平速度快于前者,约为280 m·s-1,其频率为1.0 mHz.此外,海啸引发电离层重力波与海平面上的海啸波有相似的水平速度、方向、运行时间、波形以及频率等传播特征.本文的研究将电离层中的海啸信号与地震信号区分开来,进一步确认电离层对海啸波的敏感性.  相似文献   

6.
The earth's ionosphere possesses plasma properties at altitudes above 80 km where the collisions of charged particles with the neutral gas gradually lose their dominating influence. The ionosphere can be characterized as a weakly ionized low- and low-temperature plasma of great homogeneity with respect to the spatial scales of most of the processes of interest. The basic properties of the ionospheric plasma are presented in Section 2.1. The role of thermal fluctuations and their use in a powerful diagnostic technique -- the incoherent scatter technique -- are reviewed in Section 2.2. Plasma instabilities of natural cause, occurring in different altitude regions, are briefly discussed in Sections 2.3 and 2.4. The major part of this article is devoted to active experiments in the ionospheric plasma, as initiated by powerful electromagnetic waves transmitted from the ground, and their theoretical understanding (Section 3). Nonlinear effects caused by strong electromagnetic waves are numerous, but they can be traced to either of two nonlinearity mechanisms, thermal or ponderomotive. Thermal nonlinearities in a homogeneous wave field are briefly sketched in Section 3.1. Thermal nonlinearities in an inhomogeneous wave field, having their origin in pressure gradient forces and resulting in two different types of density irregularities, both aligned with the magnetic field, are treated in Section 3.2. Ponderomotive nonlinearities have their source in the convective derivative in the electron momentum equation which gives rise to a force that pushes plasma from high to low wave intensity. Specific phenomena caused by ponderomotive action are Langmuir turbulence and stimulated electromagnetic emissions (SEE). Both these phenomena are presently the subjects of intensive experimental and theoretical investigations, and they are described at some length in Section 3.3.  相似文献   

7.
南京地区低电离层加热效应的初步模拟   总被引:6,自引:4,他引:2       下载免费PDF全文
孟兴  方涵先 《地球物理学报》2014,57(11):3642-3649
从电子能量方程和连续性方程出发,利用国际参考电离层(IRI-2007)和中性大气模型(NRLMSISE-00)得出背景参数,数值计算了大功率无线电波加热南京地区低电离层的电子温度和电子密度扰动幅度,并对比了不同加热条件下的电离层扰动效应.结果表明,大功率无线电波入射到电离层后,与等离子体相互作用,能够有效造成电子温度的升高而产生电子温度扰动;由于电子温度升高,等离子体碰撞频率增加且电子的复合系数减小,导致电子密度扰动;电子温度和电子密度的扰动幅度随着加热时间的推移而减小,即扰动逐渐趋于饱和;电子温度扰动的弛豫时间尺度为微秒量级,电子密度扰动的弛豫时间尺度为毫秒量级;在欠密加热条件下,X波模比O波模更容易吸收.  相似文献   

8.
A review is presented of the effects influencing the ionosphere which are caused by acoustic emission from different sources (chemical and nuclear explosions, bolides, meteorites, earthquakes, volcanic eruptions, hurricanes, launches of spacecrafts and flights of supersonic jets). A terse statement is given of the basic theoretical principles and simplified theoretical models underlying the physics of propagation of infrasonic pulses and gravity waves in the upper atmosphere. The observations of “quick” response by the ionosphere are pointed out. The problem of magnetic disturbances and magnetohydrodynamic (MHD) wave generation in the ionosphere is investigated. In particular, the supersonic propagation of ionospheric disturbances, and the conversion of the acoustic energy into the so-called gyrotropic waves in the ionospheric E-layer are considered.  相似文献   

9.
The results of numerical experiments on the modeling of thermospheric and ionospheric disturbances under conditions of sudden stratospheric warming are presented to study the possible mechanisms of such disturbances. Local disturbances caused by a planetary wave with zonal wave number s = 1 and internal gravity waves (IGWs) propagating from the disturbed region in the stratosphere are taken into account as sources of disturbances. It is shown that the inclusion of an additional source of thermospheric disturbances caused by mesospheric variations of atmospheric parameters with IGW periods over the region of sudden stratospheric warming leads to significant changes in the parameters of the thermosphere and ionosphere, including a change in the global structure of the distributions of the gas components of the thermosphere and a shift in maximum concentrations of atomic oxygen to low latitudes of the Southern Hemisphere; there is an increase in the mean values, the diurnal and semidiurnal variations of the ion concentration in the F region of the ionosphere. These features of changes in the parameters of the thermosphere and ionosphere occurred with insignificant disturbances of tidal variations in the thermosphere.  相似文献   

10.
It is shown that ionosphere heating by DC electric field leads to instability of acoustic-gravity waves and to the formation of solitary internal gravity vortex structures. These dipole type vortices with characteristic transverse size of the order of several kilometers are propagated in the lower ionosphere with subsonic velocity. The threshold values of the electric field needed to suppress the wave damping caused by the interaction of induced current with the geomagnetic field and to provide the vortex generation are found. The considered physical mechanism is applicable to the generation of internal gravity vortices and related ionospheric disturbances when the ionosphere is influenced by the electric field of seismic origin exceeding the threshold value.  相似文献   

11.
Transformation of infrasound to magnetic sound upon propagation from ground level up to the ionosphere is considered. It is shown that upon entering the ionospheric layers at altitudes of order 150–170 km, the wave dynamics changes sharply. Nonlinear effects, including shock formation, are also considered. The shocks are typically formed in a relatively narrow range of altitudes, or not formed at all. Generalization of the model to a case of oblique propagation is briefly considered, and the effects of atmospheric profile variation and of finite plasma conductivity are estimated. Along with providing qualitative insight, the model gives some realistic estimates for waves generated by earthquakes.  相似文献   

12.
Wave-like disturbances (WDs) with periods of 30–120 min at altitudes of 125–500 km (100–1000 km in individual experiments) have been studied. The measurements of total duration more than 400 h have been performed under the conditions of a quiet ionosphere as well as during magnetic and ionospheric storms and two solar eclipses. It has been indicated that WDs exist almost permanently in the ionosphere. The effect of powerful energy sources leads to a change in the WD character and to variations in the WD spectral composition and amplitudes. The latter substantially vary during a day and depending on the disturbance of the ionosphere. The WD relative amplitudes vary from several percent to several tens of percent.  相似文献   

13.
Effects of the solar activity on the geomagnetic Sq field were studied by examining the correlation of the Sq amplitude in the Y-component with the sunspot number or height integrated Pedersen and Hall conductivities of the ionosphere at Kakioka, Chambon La Foret and Port Moresby for a period of 21 years. It was found that solar activity dependence of the Sq amplitude is almost explained by the effect of the local ionospheric conductivity if the month is fixed. That is, the solar activity dependence in each month is mainly caused by the local conductivity. However, the amplitude is clearly small in winter for the same conductivity value. This is probably due to the seasonal difference of the neutral winds driving ionospheric dynamo currents or to the magnetic effect of the field-aligned currents connecting both hemispheres driven by the asymmetric dynamo action in the ionosphere.  相似文献   

14.
This paper deals with how atmospheric gravity waves produce the traveling ionospheric disturbances (TIDs) that are observed by ionosondes. It is shown that, rather than directly producing variations of ionospheric height, a likely mechanism involves changes in ionization density by gradients in the horizontal atmospheric gravity wave air motion. These density changes can be observed as variations of the height of an ionospheric isodensity surface (the usual way of measuring TIDs). This mechanism involving enhancement/depletion of ionospheric density requires quite moderate atmospheric gravity wave air motion speeds, and works well at almost all latitudes.  相似文献   

15.
释放化学物质耗空电离层电子密度的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
电离层作为电波传播的主要通道和载体,影响着无线电通信的质量,因此人工电离层扰动具有广阔的应用前景,在电离层中释放具有较强电子亲和力的化学物质可以耗空电离层F区的电子密度,是人工电离层扰动的有效手段之一.本文通过对CO2和SF6气体在电离层中的扩散和离子化学反应过程的分析,理论计算了在我国北京地区上空释放这两种气体后电离...  相似文献   

16.
The broadband electrostatic turbulence generally observed in the high-latitude ionosphere is a superposition of nonlocal waves of ion-acoustic and ion-cyclotron types. In the presence of a shear of ion parallel velocity, ion-acoustic modes can be induced by an instability emerging due to an inhomogeneous distribution of energy density. This paper is devoted to the studies of excitation of oblique ion-acoustic wave in background configurations with inhomogeneous profiles of both electric field and ion parallel velocity. A numerical algorithm has been developed, and instability was simulated at various parameters of background plasma. The general possibility of oblique ion-acoustic wave generation by a gradient of ion parallel velocity is shown. In this case, the wave spectrum is found to be broadband, which agrees with satellite observations.  相似文献   

17.
The disturbance generation model for the total electron content of the ionosphere and formation of the narrowband spectrum of electromagnetic disturbance on the Earth during a rocket flight along the horizontal leg of the trajectory has been considered. It has been indicated that a change in the total electron content is caused by the propagation of an acoustic gravity wave pulse, generated during a rocket flight along the horizontal trajectory leg, in the ionosphere. This pulse forms horizontal inhomogeneities of ionospheric conductivity in the bottomside ionosphere. Electric currents, induced by the background electromagnetic field in these inhomogeneities, are emitters of discrete modes of coherent gyrotropic waves propagating horizontally in a conductive layer of a finite thickness in the bottomside ionosphere. The line spectrum of electromagnetic disturbances has been calculated. The calculation results agree with the observational data.  相似文献   

18.
The transionospheric radiosounding (TIS) method has naturally brought together the two most precise methods for scanning and monitoring the ionosphere (ionospheric radiosounding by airborne and ground ionosondes) into a single system. The subsequent development of TIS equipment has led to a qualitative change in the structure and operation of the ionospheric observatory, which greatly broadened the diagnostic capabilities of the ionospheric monitoring and expanded the ionospheric region monitored by the ground station. In fact, it can be said that a closed radiosounding system has been developed. It uses three branches of ionospheric multifrequency ray (or radio wave) fans to monitor the inner and outer ionosphere and to control both of these regions via transillumination of the ionosphere at the boundary of its radio transparency. The advantage of such a system is the full use of the entire range of radiated radio waves, each part of which is responsible for certain components of the diagnostic circuit. The paper presents the results of scientific studies obtained based on TIS data, which have led to the appearance of new and, to some extent, unexpected and previously unknown phenomena and effects. Special attention is paid to the modern stage of development of the TIS concept, which has good prospects for continuous monitoring of the polar ionosphere. It is questioned whether it is expedient to replace the term sounding with the term transillumination. It is noted that TIS was and remains the most precise method of ionosphere diagnostics.  相似文献   

19.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

20.
A mathematical model of the convecting high-latitude ionosphere is described which produces three-dimensional distributions of electron density, positive-ion velocity and electron and ion temperatures at the F-layer altitudes. The results of simulation of the behaviour of the high-latitude ionosphere, in particular, the heat regime of the F-layer, are presented and analysed. From our study, it was found that electron-temperature hot spots in the main ionospheric trough can arise owing to internal ionospheric processes, and not due to effects of any external causes. Three conditions, to be satisfied simultaneously, are necessary for the formation of the considered electron-temperature hot spots: first, low values of electron density; second, solar illumination of the upper F region and darkness of the lower F region; third, low values of neutral-component densities. These conditions are valid in the main ionospheric trough near the terminator on the nightside when the density of the neutral atmosphere is not high. The physical processes which lead to the formation of the electron-temperature hot spots are the heat transfer from the upper into the lower F region, the reduced heat capacity of electron gas and the weakened cooling of electron gas due to inelastic collisions with neutral atoms and molecules. Also investigated is the influence of seasonal and solar-activity variations on the efficiency of the identified mechanism responsible for the formation of the electron temperature peaks in the main ionospheric trough by the internal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号