首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An extreme rainfall event occurred over the middle and lower reaches of the Yangtze Basin(MLY) during the end of June 2016, which was attributable to a Tibetan Plateau(TP) Vortex(TPV) in conjunction with a Southwest China Vortex(SWCV). The physical mechanism for this event was investigated from Potential Vorticity(PV) and omega perspectives based on MERRA-2 reanalysis data. The cyclogenesis of the TPV over the northwestern TP along with the lowertropospheric SWCV was found to involve a midtropospheric large-scale flow reconfiguration across western and eastern China with the formation of a high-amplitude Rossby wave. Subsequently, the eastward-moving TPV coalesced vertically with the SWCV over the eastern Sichuan Basin due to the positive vertical gradient of the TPV-related PV advection,leading the lower-tropospheric jet associated with moisture transport to intensify greatly and converge over the downstream MLY. The merged TPV-SWCV specially facilitated the upper-tropospheric isentropic-gliding ascending motion over the MLY. With the TPV-embedded mid-tropospheric trough migrating continuously eastward, the almost stagnant SWCV was re-separated from the overlying TPV, forming a more eastward-tilted high-PV configuration to trigger stronger ascending motion including isentropic-gliding, isentropic-displacement, and diabatic heating-related ascending components over the MLY. This led to more intense rainfall. Quantitative PV diagnoses demonstrate that both the coalescence and subsequent re-separation processes of the TPV with the SWCV were largely dominated by horizontal PV advection and PV generation due to vertically nonuniform diabatic heating, as well as the feedback of condensation latent heating on the isentropicdisplacement vertical velocity.  相似文献   

2.
This study examines the features and dynamical processes of subseasonal zonal oscillation of the western Pacific subtropical high (WPSH) during early summer, by performing a multivariate empirical orthogonal function (MVEOF) analysis on daily winds and a diagnosis on potential vorticity (PV) at 500 hPa for the period 1979–2016. The first MV-EOF mode is characterized by an anticyclonic anomaly occupying southeastern China to subtropical western North Pacific regions. It has a period of 10–25 days and represents zonal shift of the WPSH. When the WPSH stretches more westward, the South Asian high (SAH) extends more eastward. Above-normal precipitation is observed over the Yangtze–Huaihe River (YHR) basin. Suppressed convection with anomalous descending motion is located over the subtropical western North Pacific. The relative zonal movement of the SAH and the WPSH helps to establish an anomalous local vertical circulation of ascending motion with upper-level divergence over the YHR basin and descending motion with upper-level convergence over the subtropical western Pacific. The above local vertical circulation provides a dynamic condition for persistent rainfall over the YHR basin. An enhanced southwest flow over the WPSH’s western edge transports more moisture to eastern China, providing a necessary water vapor condition for the persistent rainfall over the YHR basin. A potential vorticity diagnosis reveals that anomalous diabatic heating is a main source for PV generation. The anomalous cooling over the subtropical western Pacific produces a local negative PV center at 500 hPa. The anomalous heating over the YHR basin generates a local positive PV center. The above south–north dipolar structure of PV anomaly along with the climatological southerly flow leads to northward advection of negative PV. These two processes are conducive to the WPSH’s westward extension. The vertical advection process is unfavorable to the westward extension but contributes to the eastward retreat of the WPSH.  相似文献   

3.
2002年夏季中高纬大气准双周振荡对华南降水的影响   总被引:1,自引:0,他引:1  
孔晓宇  毛江玉  吴国雄 《大气科学》2017,41(6):1204-1220
利用JRA55大气再分析资料和TRMM卫星降水资料,分析了2002年夏季(5~8月)华南地区降水的低频振荡特征,重点揭示了对其影响显著的中高纬大气季节内振荡的环流结构及演变。小波和功率谱分析表明,2002年夏季华南降水表现为主周期为10~30 d的准双周低频振荡。典型低频降水事件及合成分析指出,准双周降水的强(弱)变化除了受低空西北太平洋副热带高压西伸进入(东移退出)南海的影响以外,还显著地依赖于中高纬地区高空大气环流的季节内振荡。在对流层高层,中高纬度地区存在一支自大西洋经欧亚大陆的气旋—反气旋相间排列的低频波列。该波列在欧亚大陆地区向东南传播,当异常反气旋和气旋分别位于青藏高原和华北上空时,这种偶极型环流之间的高空辐散场有利于华南地区上升运动的发展,因而华南降水偏强;反之,华南降水偏弱。研究还表明,低频波列南移造成了对流层异常温度平流和副热带高层异常绝对涡度的变化,使得华南地区上升与下沉运动交替出现以及相应的经向环流圈反转,从而导致华南准双周振荡干湿位相的转换。局地异常感热加热对干湿位相转换也起一定作用。时滞相关分析发现,当青藏高原地区500 hPa位势高度异常场超前于华南异常降水4 d(即位相差为1/4周期)时,二者出现显著正相关,表明青藏高原地区500 hPa位势高度异常对预测华南地区季节内降水变化有潜在的应用价值。  相似文献   

4.
This study investigates characteristics of the convective quasi-biweekly oscillation(QBWO) over the South China Sea(SCS) and western North Pacific(WNP) in spring, and the interannual variation of its intensity. Convective QBWO over the WNP and SCS shows both similarities and differences. Convective QBWO over the WNP originates mainly from southeast of the Philippine Sea and propagates northwestward. In contrast, convective QBWO over the SCS can be traced mainly to east of the Philippines and features a westward propagation. Such a westward or northwestward propagation is probably related to n = 1 equatorial Rossby waves. During the evolution of convective QBWO over the WNP and SCS, the vertical motion and specific humidity exhibit a barotropic structure and the vertical relative vorticity shows a baroclinic structure in the troposphere. The dominant mode of interannual variation of convective QBWO intensity over the SCS–WNP region in spring is homogeneous. Its positive phase indicates enhanced convective QBWO intensity accompanied by local enhanced QBWO intensity of vertical motion throughout the troposphere as well as local enhanced(weakened) QBWO intensity of kinetic energy, vertical relative vorticity,and wind in the lower(upper) troposphere. The positive phase usually results from local increases of the background moisture and anomalous vertical shear of easterlies. The latter contributes to the relationship between the dominant mode and QBWO intensities of kinetic energy, vertical relative vorticity, and wind. Finally, a connection between the dominant mode and the sea surface temperature anomalies in the tropical Pacific Ocean is demonstrated.  相似文献   

5.
基于台站降水观测数据和MERRA-2再分析资料,分析了2014年夏季我国长江流域降水的季节内振荡特征,并从位涡角度重点研究了与之相关的环流演变。结果表明:2014年夏季长江流域降水季节内变率以10~20d的准双周振荡为主。在降水准双周振荡的极端湿位相,受对流层高层随中纬度波列东传的正异常位涡和南亚高压东侧西南向传播的正异常位涡的共同影响,南亚高压呈“马鞍型”分布,在长江流域形成高空辐散环流;在对流层中低层,当中纬度波列的异常气旋向东南传播至长江流域以北时,西太平洋异常反气旋延伸至中国东南沿海,二者共同导致长江流域低空水汽辐合加强;在高、低层环流的共同作用下,长江流域持续性降水显著偏多,形成准双周振荡的极端湿位相;同时,长江以北高空位涡正异常导致其下方冷空气下沉,触发长江流域异常上升运动和南海地区异常下沉运动,该经向垂直环流圈的形成有利于长江流域正异常降水的维持。反之则形成极端干相位。   相似文献   

6.
The propagation and underlying mechanisms of the boreal summer quasi-biweekly oscillation (QBWO) over the entire Asian monsoon region are investigated, based on ECMWF Interim reanalysis (ERA-Interim) data, GPCP precipitation data, and an atmospheric general circulation model (AGCM). Statistical analyses indicate that the QBWO over the Asian monsoon region derives its main origin from the equatorial western Pacific and moves northwestward to the Bay of Bengal and northern India, and then northward to the Tibetan Plateau (TP) area, with a baroclinic vertical structure. Northward propagation of the QBWO is promoted by three main mechanisms: barotropic vorticity, boundary moisture advection, and surface sensible heating (SSH). It is dominated by the barotropic vorticity effect when the QBWO signals are situated to the south of 20°N. During the propagation taking place farther north toward the TP, the boundary moisture advection and SSH are the leading mechanisms. We use an AGCM to verify the importance of SSH on the northward propagation of the QBWO. Numerical simulations confirm the diagnostic conclusion that the equatorial western Pacific is the source of the QBWO. Importantly, the model can accurately simulate the propagation pathway of the QBWO signals over the Asian monsoon region. Simultaneously, sensitivity experiments demonstrate that the SSH over northern India and the southern slope of the TP greatly contributes to the northward propagation of the QBWO as far as the TP area.  相似文献   

7.
The quasi-biweekly oscillation(QBWO) is the second most dominant intraseasonal mode over the western North Pacific(WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis(TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found.More TCG events occur during the QBWO's convectively active phase. Based on the genesis potential index(GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO's active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO's inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms.Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity.The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns—the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains(SSWs) over the WNP, with larger amplitude SSWs during the QBWO's active phase. This implies a possible enhanced(weakened) relationship between TCG and SSWs during the active(inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.  相似文献   

8.
It is widely recognized that rainfall over the Yangtze River valley (YRV) strengthens considerably during the decaying summer of El Niño, as demonstrated by the catastrophic flooding suffered in the summer of 1998. Nevertheless, the rainfall over the YRV in the summer of 2016 was much weaker than that in 1998, despite the intensity of the 2016 El Niño having been as strong as that in 1998. A thorough comparison of the YRV summer rainfall anomaly between 2016 and 1998 suggests that the difference was caused by the sub-seasonal variation in the YRV rainfall anomaly between these two years, principally in August. The precipitation anomaly was negative in August 2016——different to the positive anomaly of 1998. Further analysis suggests that the weaker YRV rainfall in August 2016 could be attributable to the distinct circulation anomalies over the midlatitudes. The intensified "Silk Road Pattern" and upper-tropospheric geopotential height over the Urals region, both at their strongest since 1980, resulted in an anticyclonic circulation anomaly over midlatitude East Asia with anomalous easterly flow over the middle-to-lower reaches of the YRV in the lower troposphere. This easterly flow reduced the climatological wind, weakened the water vapor transport, and induced the weaker YRV rainfall in August 2016, as compared to that in 1998. Given the unique sub-seasonal variation of the YRV rainfall in summer 2016, more attention should be paid to midlatitude circulation——besides the signal in the tropics——to further our understanding of the predictability and variation of YRV summer rainfall.  相似文献   

9.
The external source/sink of potential vorticity (PV) is the original driving force for the atmospheric circulation. The relationship between surface PV generation and surface PV density forcing is discussed in detail in this paper. Moreover, a case study of the extreme winter freezing rain/snow storm over South China in January 2008 is performed, and the surface PV density forcing over the eastern flank of the Tibetan Plateau (TP) has been found to significantly affect the precipitation over South China in this case. The TP generated PV propagated eastward in the middle troposphere. The associated zonal advection of positive absolute vorticity resulted in the increasing of cyclo-nic relative vorticity in the downstream region of the TP. Ascending air and convergence in the lower troposphere developed, which gave rise to the development of the southerly wind. This favored the increasing of negative meridio-nal absolute vorticity advection in the lower troposphere, which provided a large-scale circulation background conducive to ascending motion such that the absolute vorticity advection increased with height. Consequently, the ascending air further strengthened the southerly wind and the vertical gradient of absolute vorticity advection between the lower and middle troposphere in turn. Under such a situation, the enhanced ascending, together with the moist air transported by the southerly wind, formed the extreme winter precipitation in January 2008 over South China.  相似文献   

10.
This paper analyzes the evolution of the South Asian High (SAH) during and after the development of tropical cyclone Neoguri over the South China Sea (SCS) in mid-April 2008, the formation of tropical storm Nargis over the Bay of Bengal (BOB) in late April, and the Asian summer monsoon onset, as well as their interrelationships. Numerical sensitivity experiments are conducted to explore the underlying mechanism responsible for these seasonal transitions in 2008. It is demonstrated that strong latent heating related with tropical cyclone activities over the SCS can enhance the development of the SAH aloft and generate zonal asymmetric potential vorticity (PV) forcing, with positive vorticity advection to its east and negative advection to its west. Following the decay of the tropical cyclone, this asymmetric forcing leads to instability development of the SAH, presenting as a slowly westward-propagating Rossby wave accompanied by a westward shift of the high PV advection. A strong upper tropospheric divergence on the southwest of the SAH also shifts westward, while positive PV eddies are shed from the high PV advection and eventually arrives in the southern BOB. Such synoptic patterns provide favorable pumping conditions for local cyclonic vorticity to develop. The latent heating release from the cyclogenesis further intensifies the upper-layer divergence, and the lower and upper circulations become phase locked, leading to the explosive development of the tropical cyclone over the southern BOB. Consequently, a tropical storm is generated and the BOB summer monsoon commences.  相似文献   

11.
为评估不同要素对东亚季风区准双周振荡的表征能力,对大气向外长波辐射(OLR)、500 hPa位势涡度、850 hPa相对涡度、850 hPa风场和750 hPa比湿等要素的准双周振荡特征进行对比,发现各要素均能很好反映东亚季风区明显的准双周振荡时空特征。OLR及500 hPa位势涡度、850 hPa相对涡度、850 hPa纬向风表征的准双周振荡呈明显的西北向传播特征,500 hPa位势涡度、850 hPa相对涡度、850 hPa纬向风北传更强,北传速度更快。850 hPa经向风的准双周振荡呈明显西移特征,北传弱,北传速度最慢。而750 hPa比湿准双周振荡呈东南向传播。不同要素准双周振荡的强度略有差异,其中750 hPa比湿与其他要素的差异大。总体而言,750 hPa比湿不能较好地表现出东亚季风区准双周振荡活动特征,而其余要素能很好地表征东亚季风区大气准双周振荡,其中500 hPa位势涡度和850 hPa相对涡度准双周振荡特征一致性高。  相似文献   

12.
The modulation of the intensity of nascent Tibetan Plateau vortices(ITPV) by atmospheric quasi-biweekly oscillation(QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former,with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases,indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.  相似文献   

13.
BCC S2S模式对亚洲夏季风准双周振荡预报评估   总被引:1,自引:1,他引:0       下载免费PDF全文
利用1994-2013年ERA-Interim及NCEP/NCAR再分析数据,对国家气候中心(BCC)次季节到季节尺度模式(S2S)1994-2013年的回报试验数据进行亚洲季风区准双周振荡(QBWO)预报能力评估,并诊断模式预报误差来源。结果表明:BCC S2S模式对QBWO的预报能力随着预报提前时间的增长而降低,9 d后预报技巧明显减弱,其周期、传播特征和强度出现误差;在提前9 d预报中,印度洋地区QBWO对流-环流系统结构松散,信号偏弱,对流向东传播,这与印度洋平均态的预报误差有关,夏季对流平均态低层水汽场在西太平洋和阿拉伯海较强,而东印度洋、孟加拉湾一带偏弱;西北太平洋地区QBWO具有向西北传播的特征,但强度偏弱,可能原因是预报低估了QBWO对流西北侧低层涡度的超前信号,经涡度方程诊断发现,地转涡度平流正贡献微弱,相对涡度平流在对流西北侧引发负涡度,从而减弱了对流西北侧由低层正涡度引发的有利条件。  相似文献   

14.
Shanghai experienced the longest rainy days in 2018/2019 winter since 1988. The physical cause of such an unusual climate condition was investigated through the diagnosis of observational data. From a seasonal perspective, a long persistent rainy winter was often associated with an El Niño condition in the equatorial Pacific. This abnormal oceanic condition induces a remote teleconnection pattern with pronounced low-level southerly anomalies over East China. The wind anomalies transported moisture from tropical oceans and caused persistent rainfall in East Asia. Meanwhile, the local rainfall time series exhibited a strong quasi-biweekly oscillation (QBWO). Three persistent rainy events were identified in the 2018/2019 winter and they all occurred during the active phase of the QBWO. The first two events were associated with a low pressure anomaly west of Shanghai. Southerly anomalies associated with the low pressure system advected high mean moisture into central eastern China, leading to the persistent rainfall there. The third event was associated with a high pressure anomaly in lower troposphere to the east of Shanghai, which induced anomalous southerlies to its west, favoring the occurrence of rainfall in Shanghai. The result suggests the importance of high-frequency variability in affecting seasonal rainfall anomalies.  相似文献   

15.
The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode for circulation over the Northwestern Pacific (WNP) during boreal summer. In this study, we investigated how the QBWO modulates tropical cyclone (TC) activities over the WNP from dynamic and thermodynamic perspectives. The propagation of the QBWO can be divided into four phases through empirical orthogonal function analysis of the vorticity at 850 hPa, which was proven to be effective in extracting the QBWO signal. TC generation and landings are significantly enhanced during the active period (phases 1 and 2) relative to the inactive period (phases 3 and 4). Composite analyses show the QBWO could significantly modulate TC activity as it propagates northwestward by changing the atmospheric circulation at both high and low levels. Cumulus convection provides an important link between TCs and the QBWO. The major component of the atmosphere heat source is found to be the latent heat release of convection. The condensation latent heat centers, vertical circulation, and water vapor flux divergence cooperate well during different phases of the QBWO. The vertical profile of the condensation latent heat indicates upper-level heating (cooling) during the active (inactive) phases of the QBWO. Thus, the northwestward propagation of the QBWO can modulate TC activity by affecting the configuration of atmospheric heating over the WNP.  相似文献   

16.
位涡外部源汇是驱动大气环流的原动力。文中详细介绍了地表位涡制造和位涡密度强迫的联系,讨论了不同坐标系中位涡密度方程的特点及其在应用中应当注意的问题。还以2008年初南方低温雨雪冰冻灾害为例,探讨了青藏高原地表位涡密度强迫及东传对下游地区对流性天气发生的影响,拟由此揭示青藏高原位涡密度强迫激发中国东部激烈天气发生的一种新机制。伴随着青藏高原地表正位涡密度的东传,下游地区对流层中高层出现纬向正绝对涡度平流,气旋性环流增强,从而促使低空南风发展,为南方地区提供充沛的水汽条件。另外,南风的增强有利于低空经向负绝对涡度平流的加强,从而使南方地区高、低空形成绝对涡度平流随高度增大的大尺度环流背景,有利于上升运动的发展。上升运动的加强又促进低空南风气流的增强,使高、低空绝对涡度平流随高度增大的环流背景进一步增强,最终导致降水的产生。   相似文献   

17.
利用美国海洋大气局(National Oceanic and Atmospheric Administration,NOAA)逐日对外长波辐射(Outgoing Longwave Radiation,OLR)资料、欧洲中期天气预报中心ERA-Interim再分析资料和美国联合台风预警中心(Joint Typhoon Warning Center,JTWC)台风路径最佳资料,考察了热带大气夏季准双周振荡(Quasi-biweekly Oscillation,QBWO)对西北太平洋台风生成的影响,揭示了QBWO对西北太平洋台风生成位置、频数和发生概率的显著影响。结果表明:(1)伴随QBWO对流活跃中心的西北方向的传播,西北太平洋台风生成位置也呈现相应移动;(2)QBWO对流活跃位相期间,台风频数偏多,发生概率偏高,而在QBWO对流抑制位相,台风频数偏少,发生概率偏低;(3)台风生成潜在指数(Genesis Potential Index, GPI)收支分析指出了对流层低层绝对涡度和中层相对湿度是调制整个海域台风生成的两个重要的大尺度环境因子;(4)GPI的收支分析还表明了大尺度环境因子对台风生成的影响对QBWO的位相与区域具有显著的依赖性。在QBWO对流活跃位相期间,南海中北部区域低层涡度对GPI正异常贡献最为显著;在菲律宾以东海域,对流层中层相对湿度对GPI正异常贡献最为显著;在关岛附近海域,主要的贡献来自于低层绝对涡度与非线性项,且它们对GPI负异常的贡献相当。在QBWO对流抑制位相,南海中北部区域GPI的负异常贡献主要来自于低层绝对涡度;在菲律宾以东海域GPI负异常贡献主要来自中层相对湿度;关岛附近海域的GPI正异常的主要贡献来自于垂直风切变和非线性项。   相似文献   

18.
Shanghai experienced the longest rainy days in 2018/2019 winter since 1988. The physical cause of such an unusual climate condition was investigated through the diagnosis of observational data. From a seasonal perspective, a long persistent rainy winter was often associated with an El Ni?o condition in the equatorial Pacific. This abnormal oceanic condition induces a remote teleconnection pattern with pronounced low-level southerly anomalies over East China.The wind anomalies transported moisture from tropical oceans and caused persistent rainfall in East Asia. Meanwhile, the local rainfall time series exhibited a strong quasi-biweekly oscillation (QBWO). Three persistent rainy events were identified in the 2018/2019 winter and they all occurred during the active phase of the QBWO. The first two events were associated with a low pressure anomaly west of Shanghai. Southerly anomalies associated with the low pressure system advected high mean moisture into central eastern China, leading to the persistent rainfall there.The third event was associated with a high pressure anomaly in lower troposphere to the east of Shanghai, which induced anomalous southerlies to its west, favoring the occurrence of rainfall in Shanghai. The result suggests the importance of high-frequency variability in affecting seasonal rainfall anomalies.  相似文献   

19.
高空急流对青藏高原切变线影响的数值试验与动力诊断   总被引:2,自引:0,他引:2  
罗雄  李国平 《气象学报》2018,76(3):361-378
利用NCEP 1°×1° FNL分析资料和中尺度数值模式WRF对一次青藏高原(简称高原)切变线过程进行了数值试验,主要研究高空急流强度对高原切变线的影响,并结合ω方程分析了影响高原切变线上垂直上升运动的若干因子。研究得出高空急流的强度对低层风场有重要影响,急流增强会使高原切变线上的风切变增大,切变线变长,同时高空急流强度的增强也有利于高原切变线上水汽的辐合。高空急流可通过影响高层辐散、低层辐合的散度场垂直配置对高原切变线上的正涡度柱与辐合上升运动产生作用。ω方程的诊断分析表明,温度平流的拉普拉斯项对高原切变线上的垂直上升运动起主导作用,低层暖平流有利于切变线上产生上升运动。高空急流强度的变化对差动涡度平流项的影响要大于温度平流拉普拉斯项,高空急流强度的增强会放大差动涡度平流项和温度平流项的正贡献,从而更加有利于上升运动及高原切变线的维持。   相似文献   

20.
This study explores the characteristics of high temperature anomalies over eastern China and associated influencing factors using observations and model outputs. Results show that more long-duration (over 8 days) high temperature events occur over the middle and lower reaches of the Yangtze River Valley (YRV) than over the surrounding regions, and control most of the interannual variation of summer mean temperature in situ. The synergistic effect of summer precipitation over the South China Sea (SCS) region (18°-27°N, 115°-124°E) and the northwestern India and Arabian Sea (IAS) region (18°-27°N, 60°-80°E) contributes more significantly to the variation of summer YRV temperature, relative to the respective SCS or IAS precipitation anomaly. More precipitation (enhanced condensational heating) over the SCS region strengthens the western Pacific subtropical high (WPSH) and simultaneously weakens the westerly trough over the east coast of Asia, and accordingly results in associated high temperature anomalies over the YRV region through stimulating an East Asia-Pacific (EAP) pattern. More precipitation over the IAS region further adjusts the variations of the WPSH and westerly trough, and eventually reinforces high temperature anomalies over the YRV region. Furthermore, the condensational heating related to more IAS precipitation can adjust upper-tropospheric easterly anomalies over the YRV region by exciting a circumglobal teleconnection, inducing cold horizontal temperature advection and related anomalous descent, which is also conducive to the YRV high temperature anomalies. The reproduction of the above association in the model results indicates that the above results can be explained both statistically and dynamically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号