首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

2.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

3.
Under recent Arctic warming, boreal winters have witnessed severe cold surges over both Eurasia and North America, bringing about serious social and economic impacts. Here, we investigated the changes in daily surface air temperature (SAT) variability during the rapid Arctic warming period of 1988/89–2015/16, and found the daily SAT variance, mainly contributed by the sub-seasonal component, shows an increasing and decreasing trend over eastern Eurasia and North America, respectively. Increasing cold extremes (defined as days with daily SAT anomalies below 1.5 standard deviations) dominated the increase of the daily SAT variability over eastern Eurasia, while decreasing cold extremes dominated the decrease of the daily SAT variability over North America. The circulation regime of cold extremes over eastern Eurasia (North America) is characterized by an enhanced high-pressure ridge over the Urals (Alaska) and surface Siberian (Canadian) high. The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region, while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation (PDO)–like sea surface temperature (SST) anomalies over the North Pacific. The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming, reduced the occurrence of extreme cold days, and possibly resulted in the decreasing trend of daily SAT variability in North America. The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America. Therefore, the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.  相似文献   

4.
利用MPI-ESM-LR模式RCP8.5情景下海冰浓度、降水、海表面温度、500 hPa位势高度和850 hPa风场等数据,对比分析了一次北极海冰突变前后春季海冰与东亚夏季降水关系的差异,并探究其可能成因.结果表明:1)北极海冰突变导致北极海冰浓度(Sea Ice Concentration,SIC)和ENSO对东亚夏...  相似文献   

5.
Observational analysis and purposely designed coupled atmosphere–ocean (AOGCM) and atmosphere-only (AGCM) model simulations are used together to investigate a new mechanism describing how spring Arctic sea ice impacts the East Asian summer monsoon (EASM). Consistent with previous studies, analysis of observational data from 1979 to 2009 show that spring Arctic sea ice is significantly linked to the EASM on inter-annual timescales. Results of a multivariate Empirical Orthogonal Function analysis reveal that sea surface temperature (SST) changes in the North Pacific play a mediating role for the inter-seasonal connection between spring Arctic sea ice and the EASM. Large-scale atmospheric circulation and precipitation changes are consistent with the SST changes. The mechanism found in the observational data is confirmed by the numerical experiments and can be described as follows: spring Arctic sea ice anomalies cause atmospheric circulation anomalies, which, in turn, cause SST anomalies in the North Pacific. The SST anomalies can persist into summer and then impact the summer monsoon circulation and precipitation over East Asia. The mediating role of SST changes is highlighted by the result that only the AOGCM, but not the AGCM, reproduces the observed sea ice-EASM linkage.  相似文献   

6.
胡永云  姜天宇 《大气科学》2009,33(5):1058-1070
观测表明北极平流层自20世纪70年代末以来在冬季早期 (11~12月) 存在变暖的趋势。为了验证该趋势是否是由于海面温度 (SST) 升高造成的, 我们使用观测的全球SST强迫一个全球大气环流模式 (AGCM)。集合模拟的结果表明, 在SST强迫下, 北极平流层呈现统计显著的变暖趋势, 极地对流层也有相对较弱的变暖趋势, 但统计显著性较低。通过对模拟的位势高度进行经验正交函数 (EOF) 分析, 我们发现北半球位势高度第一模态 (EOF1) 的空间结构非常类似于北极涛动 (AO) 或北半球环状模 (NAM), 其平流层主分量时间序列在冬季早期呈现统计显著的负趋势。与负的AO趋势相对应的是, 对流层高纬度和平流层中高纬度波动增强, 说明极区变暖是由于波动增强产生的极区绝热加热增强造成的。另外, 模拟的结果还表明北极平流层不仅在冬季早期出现变暖的趋势, 在冬季晚期 (2~3月) 北极平流层低层也出现弱的变暖趋势。SST强迫导致北极平流层冬季变暖不利于异相臭氧化学反应的发生, 这对极地平流层臭氧恢复有着重要意义。  相似文献   

7.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

8.
An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a rainy spring in LPB not directly driven by remote SST forcing. In this case the internal variability has a dominant role, as the model is not able to reproduce the correct local precipitation pattern.  相似文献   

9.
Western China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65%–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.  相似文献   

10.
北极是全球气候系统平衡的重要一环,近20 a全球变暖现象中,北极迅速增温及融冰是最为引人关注的问题之一.人类影响无疑是过去几十年北极变暖背后的最主要的原因及驱动力,但气候系统的内在自然变率对北极的影响也不容忽视.本文指出,北极变暖的自然影响因子有一部分来源于热带太平洋东部海温的变化,热带太平洋通过由东部海温异常所驱动的...  相似文献   

11.
The Arctic Amplification Debate   总被引:16,自引:0,他引:16  
Rises in surface air temperature (SAT) in response to increasing concentrations of greenhouse gases (GHGs) are expected to be amplified in northern high latitudes, with warming most pronounced over the Arctic Ocean owing to the loss of sea ice. Observations document recent warming, but an enhanced Arctic Ocean signal is not readily evident. This disparity, combined with varying model projections of SAT change, and large variability in observed SAT over the 20th century, may lead one to question the concept of Arctic amplification. Disparity is greatly reduced, however, if one compares observed trajectories to near-future simulations (2010–2029), rather than to the doubled-CO2 or late 21st century conditions that are typically cited. These near-future simulations document a preconditioning phase of Arctic amplification, characterized by the initial retreat and thinning of sea ice, with imprints of low-frequency variability. Observations show these same basic features, but with SATs over the Arctic Ocean still largely constrained by the insulating effects of the ice cover and thermal inertia of the upper ocean. Given the general consistency with model projections, we are likely near the threshold when absorption of solar radiation during summer limits ice growth the following autumn and winter, initiating a feedback leading to a substantial increase in Arctic Ocean SATs.  相似文献   

12.
 A method is described for evaluating the ‘partial derivatives’ of globally averaged top-of-atmosphere (TOA) radiation changes with respect to basic climate model physical parameters. This method is used to analyse feedbacks in the Australian Bureau of Meteorology Research Centre general circulation model. The parameters considered are surface temperature, water vapour, lapse rate and cloud cover. The climate forcing which produces the changes is a globally uniform sea surface temperature (SST) perturbation. The first and second order differentials of model parameters with respect to the forcing (i.e. SST changes) are estimated from quadratic least square fitting. Except for total cloud cover, variables are found to be strong functions of global SST. Strongly non-linear variations of lapse rate and high cloud amount and height appear to relate to the non-linear response in penetrative convection. Globally averaged TOA radiation differentials with respect to model parameters are also evaluated. With the exception of total cloud contributions, a high correlation is generally found to exist, on the global mean level, between TOA radiation and the respective parameter perturbations. The largest non-linear terms contributing to radiative changes are those due to lapse rate and high cloud. The contributions of linear and non-linear terms to the overall radiative response from a 4 K SST perturbation are assessed. Significant non-linear responses are found to be associated with lapse rate, water vapour and cloud changes. Although the exact magnitude of these responses is likely to be a function of the particular model as well as the imposed SST perturbation pattern, the present experiments flag these as processes which cannot properly be understood from linear theory in the evaluation of climate change sensitivity. Received: 16 January 1997/Accepted: 9 May 1997  相似文献   

13.
This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990 s. Observations indicate an abrupt increase in summer mean surface air temperature(SAT) over Northeast Asia since the mid-1990 s. Accompanying this abrupt surface warming, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature(Tmax), daily minimum temperature(Tmin), annual hottest day temperature(TXx), and annual warmest night temperature(TNx) were observed. There were also increases in the frequency of summer days(SU) and tropical nights(TR).Atmospheric general circulation model experiments forced by changes in sea surface temperature(SST)/ sea ice extent(SIE),anthropogenic greenhouse gas(GHG) concentrations, and anthropogenic aerosol(AA) forcing, relative to the period 1964–93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes,although the abrupt decrease in precipitation since the mid-1990 s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA(through aerosol–radiation and aerosol–cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere–land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990 s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.  相似文献   

14.
The Northeast China cold vortex(NCCV) during late summer(from July to August) is identified and classified into three types in terms of its movement path using machine learning. The relationships of the three types of NCCV intensity with atmospheric circulations in late summer, the sea surface temperature(SST), and Arctic sea ice concentration(SIC) in the preceding months, are analyzed. The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3) are used to verify the statistical...  相似文献   

15.
Associations between the autumn Arctic sea ice concentrations (SICs) and North American winter precipitation were examined using singular value decomposition. The results show that a reduced SIC in the majority of the Arctic is accompanied by dry conditions over the Great Plains, the southern United States, Mexico, eastern Alaska, and southeastern Greenland, and by wet conditions over the majority of Canada, the northeastern United States, and the majority of Greenland. Atmospheric circulation anomalies associated with the SIC variability show a wave train structure that is persistent from autumn to winter and is responsible for the covariability between the autumn Arctic SICs and North American winter precipitation. This relationship suggests a potential long-term outlook for the North American winter precipitation.  相似文献   

16.
依据政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第一工作组(WGI)报告第七章的内容,详细解读了气候反馈对温度空间模态的依赖性。与第五次评估报告(AR5)相比,AR6对于地表温度空间模态演变在驱动气候反馈变化中作用的理解已有了较大提升。AR6认为,在温室气体强迫下,北极在21世纪的增温幅度很可能大于全球平均水平,南极在百年时间尺度上的增温要强于热带地区;同时,在百年时间尺度上热带太平洋东部的变暖幅度大于西部,即热带太平洋东-西向海表温度梯度减弱。极地放大效应(尤其是南半球)和热带太平洋东-西向海表温度梯度随时间的变化是影响未来气候反馈如何演变的关键因素。随着地表增温空间模态的演变,气候反馈(尤其云反馈)预计将在未来几十年的时间尺度上逐渐增加,对气候变化更多是起放大作用。  相似文献   

17.
The role of winter sea-ice in the Labrador Sea as a precursor for precipitation anomalies over southeastern North America and Western Europe in the following spring is investigated. In general terms, as the sea ice increases, the precipitation also increases. In more detail, however, analyses indicate that both the winter sea-ice and the sea surface temperature(SST)anomalies related to increases in winter sea-ice in the Labrador Sea can persist into the following spring. These features play a forcing role in the spring atmosphere, which may be the physical mechanism behind the observational relationship between the winter sea-ice and spring precipitation anomalies. The oceanic forcings in spring include Arctic sea-ice anomalies and SST anomalies in the tropical Pacific and high-latitude North Atlantic. Multi-model Coupled Model Intercomparison Project Phase 5 and Atmospheric Model Intercomparison Project simulation results show that the atmospheric circulation response to the combination of sea-ice and SST is similar to that observed, which suggests that the oceanic forcings are indeed the physical reason for the enhanced spring precipitation. Sensitivity experiments conducted using an atmospheric general circulation model indicate that the increases in precipitation over southeastern North America are mainly attributable to the effect of the SST anomalies, while the increases over Western Europe are mainly due to the sea-ice anomalies. Although model simulations reveal that the SST anomalies play the primary role in the precipitation anomalies over southeastern North America, the observational statistical analyses indicate that the area of sea-ice in the Labrador Sea seems to be the precursor that best predicts the spring precipitation anomaly.  相似文献   

18.
The relationship between winter sea ice variability and the North Atlantic Oscillation (NAO) is examined for the time period 1860–2300. This study uses model output to extend recently reported observational results to multi-century time scales. Nine ensemble members are used in two Global Climate Models with forcing evolving from pre-industrial conditions through the so-called A1B scenario in which carbon dioxide stabilizes at 720 ppm by 2100. Throughout, the NAO generates an east-west dipole pattern of sea ice concentration (SIC) anomalies with oppositely signed centers of action over the Labrador and Barents Seas. During the positive polarity of the NAO, SIC increases over the Labrador Sea due to wind-driven equatorward advection of ice, and SIC decreases over the Barents Sea due to wind-driven poleward transport of heat within the mixed layer of the ocean. Although this NAO-driven SIC variability pattern can always be detected, it accounts for a markedly varying fraction of the total sea ice variability depending on the strength of the forced sea ice extent trend. For the first half of the 20th century or 1990 control conditions, the NAO-driven SIC pattern accounts for almost a third of the total SIC variance. In the context of the long term winter sea ice retreat from 1860 to 2300, the NAO-driven SIC pattern is robustly observable, but accounts for only 2% of the total SIC variance. The NAO-driven SIC dipole retreats poleward with the retreating marginal ice zone, and its Barents Sea center of action weakens. Results presented here underscore the idea that the NAO’s influence on Arctic climate is robustly observable, but time dependent in its form and statistical importance.  相似文献   

19.
本文使用六个不同的最新大气模式进行了协调数值集合实验,评估和量化了全球海表面温度(SST)对1982-2014年冬季早期北极变暖的影响.本研究设计了两组实验:在第一组(EXP1)中,将OISSTv2逐日变化的海冰密集度和SST数据作为下边界强迫场;在第二组(EXP2)中,将逐日变化的SST数据替换为逐日气候态.结果表明...  相似文献   

20.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号