首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
随着村镇经济建设发展,生活垃圾和工业固体废弃物造成的污染问题日益突出,已经成为制约新农村建设发展和生态文明建设的关键问题,而目前针对乡镇非正规固体废弃物的调查与统计主要依赖全国各乡镇相关部门逐级调查上报,工作量较大。本文基于高分辨率遥感影像,将深度学习模型和条件随机场模型相结合引入到乡镇固体废弃物的提取研究中,探索一种基于深度卷积神经网络的乡镇固体废弃物提取模型。由于固体废弃物在影像上表现为面积小,分布破碎等特点,为了提高工作效率,将模型特分为识别和提取2个部分:① 通过全连接卷积网络(CNN)对固体废弃物进行快速识别判断,筛选感兴趣区域影像块;② 在传统的全卷积神经网络(FCN)的基础上加入条件随机场模型(CRF)提取固体废弃物边界,提高整体分割精度。根据安徽、山西等地区相关部门上报固体废弃物堆放点以及住房与城乡建设部城乡规划管理中心进行野外检查的结果,实验最终识别精度达到86.87%以上;形状提取精度为89.84%,Kappa系数为0.7851,识别与提取精度均优于传统分类方法。同时,该方法已经逐步应用于住房和城乡建设部有关成都、兰州、河北等部分乡镇非正规固体废弃物的核查工作,取得了较为满意的结果。  相似文献   

2.
传统基于光谱信息的水体提取未能考虑水体形状、纹理、大小、相邻关系等问题,且存在同物异谱、异物同谱现象,导致水体提取精度较低。而传统基于分类提取水体方法设计特征过程较为繁琐,且不能挖掘深度信息特征。因此,本文提出改进的U-Net网络语义分割方法,借鉴经典U-Net网络的解编码结构对网络进行改进:① 将VGG网络用于收缩路径以提取特征;② 在扩张路径中对低维特征信息进行加强,将收缩特征金字塔上一层的特征图与下一层对应扩张路径上的特征图进行融合,以提高提取结果分割精度;③ 在分类后处理中引入条件随机场,以将分割结果精细化。在保持相同训练集、验证集和测试集的情况下,分别用SegNet、经典U-Net网络和改进的U-Net网络做对照试验。试验结果表明,改进的U-Net网络结构在IoU、精准率和Kappa系数指标上均高于SegNet和经典U-Net网络,与SegNet相比,3项指标分别提升了10.5%、12.3%和0.14,与经典U-Net网络结果相比,各个指标分别提升了5.8%、4.4%和0.05。改进的网络水体提取结果较为完整,对小目标水体能够准确提取。改进的U-Net网络能够有效地实现水体提取任务。  相似文献   

3.
采用立体匹配技术对多视卫星遥感影像进行三维场景重建一直是摄影测量与遥感领域的核心问题。基于卷积神经网络的深度学习方法极大地促进了立体匹配技术的发展,然而其中涉及匹配困难和误匹配问题的相关研究仍然不足。为了提升卫星遥感影像不适定区域中视差估计的精度,本研究提出了一种结合注意力机制的立体匹配深度学习网络,在特征提取模块中加入注意力机制,分别从通道和空间两个维度捕获全局信息,对特征进行优化;在代价体的构建模块中构建新的代价体积,并重新设置视差的回归范围。为了验证本文方法的有效性,在US3D、WHU-Stereo两个数据集上分别与已有方法 Stereo-Net、PSM-Net进行了比较分析。结果表明,本文方法在EPE(endpointerror)和D1两个指标上均能达到最优,取得了较好的性能,提高了立体匹配的精度,尤其在无纹理、重复纹理、遮挡及视差不连续区域表现出良好的鲁棒性。  相似文献   

4.
光学遥感影像在资源、环境、灾害、交通和城市等领域有着非常重要的应用价值,但高分光学遥感影像获取成本高,在一定程度上限制了推广和普及.自基于卷积神经网络的超分辨率重建模型(SRCNN)被提出后,深度学习在图像超分辨率重建技术方面迅速应用.本文提出了基于RDN卷积神经网络的遥感影像超分重建方法,使用AID、NWPU-RES...  相似文献   

5.
建筑物的自动提取对城市发展与规划、防灾预警等意义重大.当前的建筑物提取研究取得了很好的成果,但现有研究多把建筑提取当成语义分割问题来处理,不能区分不同的建筑个体,且在提取精度方面仍然存在提升的空间.近年来,基于多任务学习的深度学习方法已在计算机视觉领域得到广泛应用,但其在高分辨率遥感影像自动解译任务上的应用还有待进一步...  相似文献   

6.
遥感卫星数据是地球表面信息的重要来源,但利用传统的遥感分类方法进行土地覆盖分类局限性大、过程繁琐、解译精度依赖专家经验,而深度学习方法可以自适应地提取地物更多深层次的特征信息,适用于高分辨率遥感影像的土地覆盖分类。文中对高分辨率影像中水体、交通运输、建筑、耕地、草地、林地、裸土等进行高精度分类,结合遥感多地物分类的特点,以DeepLabV3+模型为基础,作出了以下改进:(1)骨干网络的改进,使用ResNeSt代替ResNet作为骨干网络;(2)空洞空间金字塔池化模块的改进,首先在并联的每个分支的前一层增加一个空洞率相对较小的空洞卷积,其次在分支后层加入串联的空洞率逐渐减小的空洞卷积层。使用土地覆盖样本库和自制样本库进行模型训练、测试。结果表明,改进模型在2个数据集的精度和时间效率均明显优于原始DeepLabV3+模型:土地覆盖样本库总体精度达到88.08%,自制样本库总体精度达到85.22%,较原始DeepLabV3+模型分别提升了1.35%和3.4%,时间效率每epoch减少0.39 h。改进模型能够为数据量以每日TB级增加的高分影像提供更加快速精确的土地覆盖分类结果。  相似文献   

7.
由于高空间分辨率遥感影像自身的复杂性,传统的分水岭分割方法难以取得令人满意的效果。本文提出一种改进分水岭变换的高分辨率遥感影像多尺度分割方法,在抑制分水岭过分割现象的同时,还能实现对遥感影像的多尺度分割。该方法充分考虑了高分辨率遥感影像的多光谱和多尺度特性,首先,利用各向异性扩散滤波技术对影像进行平滑滤波,目的是在滤除各种噪声的同时还能保持影像的边缘特征和重要的细节信息;然后,提取影像的多尺度形态学梯度,并从梯度图像中提取标记;接着进行基于标记的分水岭变换;最后,利用改进的快速区域合并算法实现对影像的多尺度分割。实验表明,改进的算法能有效地抑制分水岭的过分割现象,对高分辨率遥感影像有较好的分割性能。  相似文献   

8.
针对无人机影像光谱信息量不足导致的影像分割精度较低和同类地块过度分割问题,本文设计了一种面向无人机影像的改进FNEA分割方法。首先,利用特征提取方法,构建原始RGB影像的不同纹理和植被指数特征影像;然后,基于改进分离阈值法选择最佳植被指数和纹理特征;最后,将最佳特征与原始RGB数据融合,采用FNEA算法进行影像分割。将改进FNEA方法与多种分割方法对比,结果表明改进FNEA方法的分割精度更高,同一地块内过度分割可得到较好控制,适合无人机影像的分割。  相似文献   

9.
针对目前高空间分辨率遥感影像(简称高分遥感影像)地物全自动提取无法完全实现的现实,本文结合自然地物的光谱和纹理特征,提出一种面向对象的高分遥感影像典型自然地物半自动提取方法.首先构建最小生成树(Minimum Spanning Tree,MST)进行影像初始分割,根据影像灰度平均归一化值和标准差统计对象的光谱、纹理等特...  相似文献   

10.
高分辨率遥感影像的分割算法研究对遥感数据处理与应用具有重要意义。本文提出了一种优化合并的分割算法以提高运算效率,该算法包含局部最优合并和全局最优合并2个阶段。第1阶段采用凝聚层次聚类(Hierarchical Agglomerative Clustering,HAC)方法实现局部最优合并,并对其合并规则进行了优化,使优化后的合并规则先注重光谱特征,再考虑待合并区域的几何特征。第2阶段采用区域邻接图(Region Adjacency Graph,RAG)方法实现全局最优合并,其合并规则主要考虑了区域的光谱和边界信息,减少了区域尺度对合并规则函数产生的负面影响,并且该阶段利用了红黑树来实现全局最优合并,以提高对RAG的搜索效率。最后,利用OrbView3高分辨率遥感影像开展了分割实验,结果表明本文算法可以得到令人满意的分割精度。本文的成果为遥感影像分割及其相关研究提供了新思路。  相似文献   

11.
高分辨率影像分割的分形网络演化改进方法   总被引:1,自引:0,他引:1  
分形网络演化是针对高分辨遥感影像的高精度分割方法。它是以像元自下而上进行地物域合并,直至满足区域对象间异质性值大于预设阈值,停止区域合并得到最终分割结果。当对大数据量遥感影像进行分割时,形成初始区域对象的速度较慢,并且数量较多,导致分割时间长,有待在整体分割效率上进一步提高。一种有效的改进措施是采用某种分割方法,快速生成初始区域对象,然后再以初始分割结果区域对象进行区域合并。本文提出一种自动种子点的并行区域生长分割方法,用于快速生成初始区域对象;提出均匀数据划分的并行区域生长策略及消除数据划分线两侧的区域对象方法;采用OpenMP并行技术实现并行区域生长过程。分割效果对比和效率分析结果表明,本文提出的初始分割方法效率较高,并且分割结果可重现,从可信度、通用性角度来看,具有较高的实用价值。  相似文献   

12.
基于云模型和FCM聚类的遥感图像分割方法   总被引:7,自引:0,他引:7  
模糊C均值算法由于具有良好的聚类性能而被广泛应用于图像分割领域,但聚类中心的初始化问题一直影响着该算法的运行效率。好的初始聚类中心,可以使算法很快收敛于最优解,而不合适的初始聚类中心,不仅需要更多的迭代次数,而且还可能使算法最终收敛于局部最优解。文章结合云模型和FCM(模糊C均值)聚类算法,提出了一种遥感图像分割的新方法。利用云变换解决模糊C均值聚类算法的初始化中心选择问题,可以根据样本特性自动确定聚类中心值及个数,并以较少的迭代次数收敛到全局最优解,提高了模糊C均值遥感图像分割方法的效率,具有较好的稳定性和鲁棒性。文章选取三幅TM遥感图像作为样本,分别利用云模型的FCM方法和传统的FCM方法对样本进行分割实验,实验表明采用云模型的FCM方法不仅能够取得较好的分割效果,而且大大减少了使算法收敛的迭代次数,提高了分割的效率。  相似文献   

13.
针对多尺度遥感图像的分割质量评估问题,提出了一种光谱和形状相结合的分割质量评估方法。首先,采用超像元方法对图像进行初始分割,将图像过分割为若干区域;其次,根据合并准则迭代合并相邻区域来生成各尺度图像,其中,使用尺度集结构来索引各尺度的区域,使用邻接图来记录各尺度下区域间关系;然后给出各尺度图像形状紧凑性和平滑性的计算公式,并结合各尺度图像光谱特征计算出各尺度图像的同质性和异质性;最后根据贝叶斯风险最小准则选择最优分割尺度。实验结果表明,该方法可以适应不同图像内对象特质,使得最优分割尺度的选择更合理,图像分割效果更佳。  相似文献   

14.
遥感图像分类一直是遥感研究领域的核心问题。然而,传统遥感分类方法在地物复杂地区不能取得满意效果。不但分类精度不够理想,分类灵活性也存在不足。本文尝试引入证据推理软分类方法,选择小兴安岭山区一景TM遥感图像,基于用户知识和经验,通过人机交互处理,以累计信任度(CBV)最大为划分像元归类的原则得到证据推理方法的分类图像。结果表明,整体分类精度从最大似然法的78.74%提高到82.28%,kappa系数从0.67提高到0.71。但该方法对于裸地分类精度不高,通过人为设定各类别CBV阈值的方法,获得了人为干预的证据推理方法分类图,其整体分类精度达到了87.80%,kappa系数也达到了0.81,所有类别的生产者和用户精度相比于最大似然法都有提高。研究表明,证据推理方法在遥感分类精度和分类灵活性方面都具有优越性。  相似文献   

15.
随着遥感图像数量的急剧增加,如何进行高效检索已成为遥感图像信息提取和共享的瓶颈问题,基于内容的遥感图像检索因此逐渐成为了研究热点。本文提出了一种新的遥感图像检索方法,该方法综合利用了图像的色调和纹理特征。其基本过程是:首先,对图像进行主成分变换,对变化后的第一主成分图像进行五叉树分解,将大幅面的遥感图像分成一系列的子图像;然后,利用多通道Gabor滤波器与子图像做卷积运算,提取其纹理特征,同时计算像元值的方差和三阶矩作为各子图像的色调特征;最后,以子图像为特征基元,构建图像的色调直方图和纹理直方图,以多特征直方图匹配方法计算图像相似度实现遥感图像检索。利用高分辨率遥感影像的检索实验证明该方法是有效的。  相似文献   

16.
遥感影像提取结果的不光滑现象严重影响其数据质量和可视化效果。为解决这一问题,本文综合点、线、面要素的空间表达特征,提出了一种面向线要素的自适应平滑方法。首先,对现有的线要素平滑方法进行了总结和分析,指出了当前方法存在的局限性;然后,分析了噪声的来源和特点,提出了一种基于三角内心的自适应平滑方法;最后,以e Cognition8.0软件的道路自动提取结果为例,对方法的适用性和有效性进行了验证和分析。实验结果表明,本文提出的方法平滑效果较好,能够改善数据质量和可视化效果。  相似文献   

17.
18.
遥感影像解译样本数据在采集过程中,需要对地面照片、影像实例、样本数据库进行结构化整理,形成数据格式统一、存储结构规范、逻辑关系严密的成果。基于构建的方法模型,提出了一种一体化整理方法,利用Bresenham图形绘制算法,以及栅格、矢量、数据库数据编程接口,解决了各环节自动化处理问题,实现了影像实例采集、地面照片视野范围图形栅格化、数据库信息采集与录入、成果组织与结构化输出等自动控制,从而实现了一体化自动整理。试验表明:提出的方法和研发的软件能显著提高整理效率和质量,可为遥感影像解译样本数据整理提供可靠的技术方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号