首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
New data on the composition, assemblages, and formation conditions of platinum-group minerals (PGM) identified in platinum-group element (PGE) occurrences of the Monchetundra intrusion (2495 +- 13 to 2435 ± 11 Ma) are described. This intrusion is a part of the Paleoproterozoic pluton of the Monche-Chuna-Volch’i and Losevy tundras located in the Pechenga-Imandra-Varzuga Rift System. The rhythmically layered host rocks comprise multiple megarhythms juxtaposed to mylonite zones and magmatic breccia and injected by younger intrusive rocks in the process of intense and long magmatic and fluid activity in the Monchetundra Fault Zone. The primary PGM and later assemblages that formed as a result of replacement of the former have been identified in low-sulfide PGE occurrences. More than 50 minerals and unnamed PGE phases including alloys, Pt and Pd sulfides and bismuthotellurides, PGE sulfarsenides, and minerals of the Pd-As-Sb, Pd-Ni-As, and Pd-Ag-Te systems have been established. The unnamed PGE phases—Ni6Pd2As3, Pd6AgTe4, Cu3Pt, Pd2NiTe2, and (Pd, Cu)9Pb(Te, S)4—are described. The primary PGM were altered due to the effect of several mineral-forming processes that resulted in the formation of micro- and nanograins of Pt and Pd alloys, sulfides, and oxides, as well as in the complex distribution of PGE, Au, and Ag mineral assemblages. New types of complex Pt and Pd oxides with variable Cu and Fe contents were identified in the altered ores. Pt and Pd oxides as products of replacement of secondary Pt-Pd-Cu-Fe alloys occur as zonal and fibrous nanoscale Pt-Pd-Cu-Fe-(±S)-O aggregates.  相似文献   

2.
The Pindos ophiolite complex, located in the north-western part of continental Greece, hosts various podiform chromite deposits generally characterized by low platinum-group element (PGE) grades. However, a few locally enriched in PPGE + Au (up to 29.3 ppm) chromitites of refractory type are also present, mainly in the area of Korydallos (south-eastern Pindos). The present data reveal that this enrichment is strongly dependant on chromian spinel chemistry and base metal sulfide and/or base metal alloy (BMS and BMA, respectively) content in chromitites. Consequently, we used super-panning to recover PGM from the Al-rich chromitites of the Korydallos area. The concentrate of the composite chromitite sample contained 159 PGM grains, including, in decreasing order of abundance, the following major PGM phases: Pd-Cu alloys (commonly non-stoichiometric, although a few Pd-Cu alloys respond to the chemical formula PdCu4), Pd-bearing tetra-auricupride [(Au,Pd)Cu], nielsenite (PdCu3), sperrylite (PtAs2), skaergaardite (PdCu), Pd-bearing auricupride [(Au,Pd)Cu3], Pt and Pd oxides, Pt-Fe-Ni alloys, hollingworthite (RhAsS) and Pt-Cu alloys. Isomertieite (Pd11Sb2As2), zvyagintsevite (Pd3Pb), native Au, keithconnite (Pd20Te7), naldrettite (Pd2Sb) and Rh-bearing bismuthotelluride (RhBiTe, probably the Rh analogue of michenerite) constitute minor phases. The bulk of PGE-mineralization is dominated by PGM grains that range in size from 5 to 10 µm. The vast majority of the recovered PPGM are associated with secondary BMS and BMA, thus confirming that a sulphur-bearing melt played a very important role in scavenging the PGE + Au content of the silicate magma from which chromian spinel had already started to crystallize. The implemented technique has led to the recovery of more, as well as noble, PGM grains than the in situ mineralogical examination of single chromitite samples. Although, the majority of the PGM occur as free particles and in situ textural information is lost, single grain textural evidence is observed. In summary, this research provides information on the particles, grain size and associations of PGM, which are critical with respect to the petrogenesis and mineral processing.  相似文献   

3.
The Jinbaoshan Pt–Pd deposit in Yunnan, SW China, is hosted in a wehrlite body, which is a member of the Permian (∼260 Ma) Emeishan Large Igneous Province (ELIP). The deposit is reported to contain one million tonnes of Pt–Pd ore grading 0.21% Ni and 0.16% Cu with 3.0 g/t (Pd + Pt). Platinum-group minerals (PGM) mostly are ∼10 μm in diameter, and are commonly Te-, Sn- and As-bearing, including moncheite (PtTe2), atokite (Pd3Sn), kotulskite (PdTe), sperrylite (PtAs2), irarsite (IrAsS), cooperite (PtS), sudburyite (PdSb), and Pt–Fe alloy. Primary rock-forming minerals are olivine and clinopyroxene, with clinopyroxene forming anhedral poikilitic crystals surrounding olivine. Primary chromite occurs either as euhedral grains enclosed within olivine or as an interstitial phase to the olivine. However, the intrusion has undergone extensive hydrothermal alteration. Most olivine grains have been altered to serpentine, and interstitial clinopyroxene is often altered to actinolite/tremolite and locally biotite. Interstitial chromite grains are either partially or totally replaced by secondary magnetite. Base-metal sulfides (BMS), such as pentlandite and chalcopyrite, are usually interstitial to the altered olivine. PGM are located with the BMS and are therefore also interstitial to the serpentinized olivine grains, occurring within altered interstitial clinopyroxene and chromite, or along the edges of these minerals, which predominantly altered to actinolite/tremolite, serpentine and magnetite. Hydrothermal fluids were responsible for the release of the platinum-group elements (PGE) from the BMS to precipitate the PGM at low temperature during pervasive alteration. A sequence of alteration of the PGM has been recognized. Initially moncheite and atokite have been corroded and recrystallized during the formation of actinolite/tremolite, and then, cooperite and moncheite were altered to Pt–Fe alloy where they are in contact with serpentine. Sudburyite occurs in veins indicating late Pd mobility. However, textural evidence shows that the PGM are still in close proximity to the BMS. They occur in PGE-rich layers located at specific igneous horizons in the intrusion, suggesting that PGE were originally magmatic concentrations that, within a PGE-rich horizon, crystallized with BMS late in the olivine/clinopyroxene crystallization sequence and have not been significantly transported during serpentinization and alteration.  相似文献   

4.
The division of platinum-group elements (PGE) between those hosted in platinum-group minerals (PGM) versus those in solid solution in base metal sulfides (BMS) has been determined for ores from the PGE-bearing Ni-Cu-rich Jinchuan intrusion in northwest China. All the BMS are devoid of Pt and Ir, and magmatic BMS are also barren of Rh. These PGE may have been scavenged by arsenic to form PGM during magmatic crystallization of the BMS. Pd, Os, and Ru are recorded in BMS and Pd is predominantly in solid solution in pentlandite. Unlike the fresh magmatic ores, in altered or serpentinized ores, Pd-PGM are present. Froodite is hosted in magnetite, formed during alteration of BMS, accompanied by sulfur loss and liberation of Pd. Michenerite ([Pd,Pt]BiTe), sperrylite (PtAs2), and Au-bearing PGM are located in altered silicates. Irarsite (IrAsS) occurs mainly enclosed in BMS. Padmaite (PdBiSe), identified at the junctions of magnetite and BMS, was the last PGM to form and locally partially replaces earlier non-Se-bearing PGM. We propose that padmaite formed under oxidizing conditions during late local remobilization of Se from the BMS. Se-bearing PGM are rare and our review shows they are frequently associated with carbonate, suggesting that Pd and Se can be mobilized great distances in low pH oxidizing fluids and may be precipitated on contact with carbonate. S/Se ratios are used by researchers of magmatic Ni-Cu-PGE ores to determine sulfur loss, assuming Se is immobile and representative of magmatic sulfur content. This study shows that Se as well as S is potentially mobile and this should be considered in the use of S/Se ratios.  相似文献   

5.
The concentrations of platinum-group elements (PGE), Co, Re,Au and Ag have been determined in the base-metal sulphide (BMS)of a section of the Merensky Reef. In addition we performeddetailed image analysis of the platinum-group minerals (PGM).The aims of the study were to establish: (1) whether the BMSare the principal host of these elements; (2) whether individualelements preferentially partition into a specific BMS; (3) whetherthe concentration of the elements varies with stratigraphy orlithology; (4) what is the proportion of PGE hosted by PGM;(5) whether the PGM and the PGE found in BMS could account forthe complete PGE budget of the whole-rocks. In all lithologies,most of the PGE (65 up to 85%) are hosted by PGM (essentiallyPt–Fe alloy, Pt–Pd sulphide, Pt–Pd bismuthotelluride).Lesser amounts of PGE occur in solid solution within the BMS.In most cases, the PGM occur at the contact between the BMSand silicates or oxides, or are included within the BMS. Pentlanditeis the principal BMS host of all of the PGE, except Pt, andcontains up to 600 ppm combined PGE. It is preferentially enrichedin Pd, Rh and Co. Pyrrhotite contains, Rh, Os, Ir and Ru, butexcludes both Pt and Pd. Chalcopyrite contains very little ofthe PGE, but does concentrate Ag and Cd. Platinum and Au donot partition into any of the BMS. Instead, they occur in theform of PGM and electrum. In the chromitite layers the whole-rockconcentrations of all the PGE except Pd are enriched by a factorof five relative to S, Ni, Cu and Au. This enrichment couldbe attributed to BMS in these layers being richer in PGE thanthe BMS in the silicate layers. However, the PGE content inthe BMS varies only slightly as a function of the stratigraphy.The BMS in the chromitites contain twice as much PGE as theBMS in the silicate rocks, but this is not sufficient to explainthe strong enrichment of PGE in the chromitites. In the lightof our results, we propose that the collection of the PGE occurredin two steps in the chromitites: some PGM formed before sulphidesaturation during chromitite layer formation. The remainingPGE were collected by an immiscible sulphide liquid that percolateddownward until it encountered the chromitite layers. In thesilicate rocks, PGE were collected by only the sulphide liquid. KEY WORDS: Merensky Reef; Rustenburg Platinum Mine; sulphide; platinum-group elements; image analysis; laser ablation ICP-MS  相似文献   

6.
The Paasivaara PGE reef in the Penikat layered intrusion,northern Finland   总被引:1,自引:0,他引:1  
Summary Three major PGE-bearing mineralized zones have been found in the layered series of the early Proterozoic Penikat layered intrusion. These are designated as the Sompujärvi (SJ), Ala-Penikka (AP) and Paasivaara (PV) Reefs according to the site of their initial discovery.The uppermost of these, the PV Reef, has the highest Pt/Pd ratio. It is located in the transition zone between the fourth and the fifth megacyclic units. The main host rock is the uppermost anorthosite, disseminated sulphides and associated PGM being concentrated in the interstices of this plagioclase orthocumulate. The Reef has also been encountered in other parts of the transition zone, however, and sometimes even in the lowermost parts of the fifth megacyclic unit. The dominant sulphide paragenesis is chalcopyrite-pyrrhotite-pentlandite, whereas the PGM identified are represented by sperrylite (PtAs2), kotulskite (PdTe), merenskyite (PdTe2), isomertieite (Pd11Sb2As2), stibiopalladinite (Pd5Sb2), cooperite (PtS) and braggite ((Pt, Pd, Ni)S).It is suggested that the PV Reef was formed in the mixing process when the fifth magma pulse intruded into the magma chamber. Mixing of the new magma with the older residual magma in the chamber accounted for the sulphide precipitation. Mixing and convection were probably turbulent at first and the sulphides were thus able to "scavenge" PGE from a large amount of silicate melt. The metal ratios in the mineralization point to a close genetic relationship with the fifth magma pulse.
Das Paasivaara PGE Reef in der Penikat-Intrusion, Nord-Finnland
Zusammenfassung In den geschichteten Serien der frühproterozoischen Intrusion von Penikat kommen drei grössere PGE-führende Zonen vor. Diese werden als die Sompujärvi (SJ), Ala-Penikka (AP) und Paasivaara (PV) Reefs bezeichnet, entsprechend den Lokalitäten der Entdeckung.Das am höchsten gelegene PV Reef hat die höchsten Pt/Pd Verhältnisse. Es liegt in der Übergangszone zwischen der vierten und der fünften megazyklischen Einheit. Das wichtigste Wirtsgestein ist der oberste Anorthosit, wo disseminierte Sulfide und assoziierte PGM in den Zwischenräumen dieses Plagioklas-Orthokumulates vorkommen. Das Reef wurde auch in anderen Teilen der Überganszone beobachtet und manchmal sogar in den untersten Partien der fünften megazyklischen Einheit. Die dominierende Sulfidparagenese ist Kupferkies-Magnetkies-Pentlandit; PGM sind Sperrylith (PtAs2), Kotulskit (PdTe), Merenskyit (PdTe2), Isomertieit (Pd11Sb2As2), Stibiopalladinit (Pd5Sb2), Cooperite (PtS) und Braggit ((Pt, Pd, Ni)S).Es wird angeregt, dass das PV Reef während der Mischungsvorgänge bei der Intrusion des fünften Magma Pulses in die Magmenkammer entstanden ist. Mischung des neuen Magmas mit dem alten Residual-Magma in der Kammer war für die Ausfällung der Sulfide verantwortlich. Mischung und Konvektion dürften anfangs turbulent gewesen sein, und so konnten die Sulfide die PGE aus einem beträchtlichen Anteil der Silikatschmelze entfernen. Die Metallverhältnisse dieser Vererzung lassen eine enge genetische Verbindung mit dem fünften Magmapuls erkennen.


With 8 Figures  相似文献   

7.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

8.
Summary We have conducted electron microprobe (EMP) analysis of 158 grains of platinum-group minerals (PGM; 0.1–1 mm in size) from 11 placer samples collected from Holocene fluvial placers and buried paleochannel placers at various localities in British Columbia. These grains principally comprise Pt-Fe-(Cu) alloy minerals: Fe-rich platinum [ΣPGE:(Fe + Cu + Ni) = 3.6–7.6], Pt3Fe-type alloy (isoferroplatinum or Fe-rich platinum), subordinate “Pt2Fe”-type alloy (probably, a compositional variant of Fe-rich platinum) and the tulameenite-tetraferroplatinum series. Less-abundant are iridium [Ir-dominant Ir-Os-(Pt) alloy] and osmium [Os-dominant Os-Ir-(Pt) alloy]. Ruthenium [Ru-dominant Ru-Ir-Os alloy] occurs as a single grain. One of these Pt-Fe alloy grains is unusually zoned; its core zone is: Pt74.0Fe20.4Cu1.9Ir1.5Rh1.1Pd1.0Os0.08Ru0.01Ni0.01 (in at%) [ΣPGE:(Fe + Cu + Ni) = 3.5], and its rim zone is: Pt78.5Fe15.5Cu1.7Ir1.5Rh1.4 Pd1.2Ni0.15Os0.06Ru<0.01 [ΣPGE:(Fe + Cu + Ni) = 4.8]. This zoning indicates late-stage removal of Fe and corresponding addition of Pt, probably as a result of interaction with a late fluid phase. Various combinations of minor elements: Ir-Rh, Rh-Pd, and Ir-Rh-Pd are observed in the analysed Pt-Fe-Cu alloys. However, the Ir-Pd pair appears to be prohibited because of crystallochemical factors. Minute PGM inclusions in Pt-Fe alloy grains, likely derived from the Tulameen complex, comprise: hongshiite (Pt1.04Pd0.02 Cu0.93), sperrylite (Pt0.93Ir0.03)Σ0.96(As2.02Sb0.01)Σ2.03, hollingworthite-platarsite (Rh0.74 Pt0.21Fe0.02Pd0.02Ir0.01)Σ1.00S0.91As1.10, cuprorhodsite-malanite (Cu0.91Fe0.03Ni<0.01)Σ0.95 (Rh1.06Pt0.89Ir<0.01)Σ1.95S4.10, a rare Te-rich isomertieite (Pd10.96Fe0.03)Σ10.99(Sb1.13 Te0.94)Σ2.07As1.93, and an unusual Pt-Pd-Rh antimonide [(Pt + Pd + Rh):(Sb + As) = 1.2–1.25], related to genkinite. This antimonide may exhibit a minor solid solution extending from genkinite toward stumpflite. In addition, 20 grains of diopside [Ca46.4–49.1Mg42.8–48.2Fe3.1–8.1; ≤0.59 wt% Cr2O3] and 20 grains of olivine [Fo86.8–91.5 Fa7.9–12.5], from a PGM-bearing placer located in the vicinity of the Tulameen complex, were analysed. The compositional ranges of these placer silicates are comparable to those of clinopyroxene and olivine in the olivine clinopyroxenite and dunite units of the Tulameen complex. The majority of the analysed placer PGM grains were probably derived from Alaskan-type source rocks, whereas an ophiolitic source, associated with the Atlin ophiolite complex, is suggested for the placer PGM deposits in the Atlin area, northern British Columbia. Authors’ addresses: Andrei Y. Barkov, Robert F. Martin, Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 2A7, Canada; Michael E. Fleet, Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 5B7, Canada; Graham T. Nixon and Victor M. Levson, B.C. Geological Survey, Ministry of Energy, Mines and Petroleum Resources, PO Box 9320 Stn. Prov. Govt., Victoria, British Columbia V8W 9N3, Canada  相似文献   

9.
Summary Drill cores from the newly discovered Baronskoe-Kluevsky Pd–Au deposit (Volkovsky massif, Central Urals) have been investigated by reflected-light and electron microscopy, and the ore minerals were analyzed by electron microprobe. The most abundant Platinum-group mineral (PGM) is vysotskite, ideally PdS, characterized by an unusual Pt,Ni-poor composition. Palladium also occurs in kotulskite (PdTe), stillwaterite (Pd8As3), and unknown Pd–As–Te compounds with vincentite-type Pd3(As,Te), stillwaterite-type Pd8(As,Te)3, and Pd7(As,Te)2 stoichiometries. The main carrier of Au is Pd-rich electrum, approaching the composition Au75Ag15Pd10, with minor Fe, Cu, Ni and Pt. The precious minerals are closely associated with minute blebs of chalcopyrite+magnetite disseminated throughout serpentinized olivine-apatite host rock. Paragenetic relationships among the ore minerals define a succession of crystallization events in the order: 1) Cu–Pd sulfides+electrum, 2) replacement by Pd–Te–As and late Pd–As PGM, 3) final replacement by magnetite. The paragenesis is tentatively related with cooling of a fluid phase in the late- to post-magmatic stage.  相似文献   

10.
Contents of Pt and Pd were determined in weakly mineralized rocks, ores, and flotation concentrates of the Aksug porphyry Cu-Mo deposit, northeastern Tuva. In all studied samples they are above the detection limits: Pt = 17–96 ppb and Pd = 9–924 ppb. These elements are unevenly distributed throughout the rocks and ores, with Pd/Pt varying from 0.5 to 37. Study of Pd-rich ores (up to 924 ppb, Pd/Pt = 37) on a JEOL JSM 5600 scanning electron microscope revealed finest (2–5 μm) merenskyite inclusions (25.20% Pd, 1.21% Pt, 72.31% Te) in chalcopyrite. The calculated crystallochemical formula of merenskyite from ores of the Aksug deposit is (Pd0.862Pt0.023Cu0.026Fe0.025)Te2.064. The merenskyite is associated with electrum (79.92% Au, 18.96% Ag), monazite, cobaltite, tennantite, and Sr-containing barite (4.6–18.0% Sr). Palladium mineralization occurs in massive chalcopyrite veinlets in zones of intensely propylitized rocks. The Devonian Aksug ore-bearing porphyry complex developed in the field of Early-Middle Cambrian intrusions of gabbro-diorite-plagiogranites associated with basalt-andesite effusions of island-arc complex. This might have led to high PGE contents in the Aksug rocks. The deposit formation proceeded with the participation of ore-bearing Cl-enriched fluids favoring the concentration and transport of PGE in porphyry copper systems.  相似文献   

11.
Platinum-Group Minerals from the Durance River Alluvium,France   总被引:2,自引:2,他引:0  
Summary Platinum-group minerals were discovered, during gold recovery, in the Durance river alluvium, near Peyrolles (Bouches-du-Rhône). The PGM grains (average size 130 microns) are strongly flattened (average thickness 64 microns). The PGM concentrate consists primarily of (Pt, Fe) alloys (92%), (Os, Ir, Ru) alloys (3.5%), and native gold and (Au, Cu, Ag) alloys (4.5%). The following minerals were observed: isoferroplatinum, ferroan platinum, native osmium, native iridium, iridosmine, rutheniridosmine, osmiridium, ruthenian osmium, osmian ruthenium, cuprorhodsite, guanglinite, shandite, tetrauricupride, native gold, bornite, heazlewoodite, (Pt, Pd)2Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe)1–x (Pd, Rh, Pt)2+xS2, (Pt, Pd)4–xCu2As1–x. Isoferroplatinum contains numerous inclusions of alloys, sulphides, arsenides, Pd-tellurides, and partly devitrified silicate glass droplets. Most of the non-silicate inclusions also exhibit a drop-like shape indicating their original entrapment in a liquid state.Cuprorhodsite crystals (up to 20 microns) are associated with bornite included in Pt3Fe. Rarely, Pd- and Cu-sulphides, and Pd-tellurides appear in this association. Complex droplet-like arsenide inclusions in isoferroplatinum are composed of Pt bearing guanglinite and (Pt,Pd)4+xCu2As1–x. Native iridium shows exsolutions of Ir-bearing isoferroplatinum and (Pt,Pd)2Cu3. In places, concentrations of Sn (up to 3 wt.%) were observed in (Au, Cu) alloys. Shandite and (Ni, Pt)Sn inclusions occur in (Au, Cu, Ag) alloys. Silicate-glass inclusions are TiO2-poor and occasionally K-rich (plotting in the shoshonitic field). Taking into account mineralogical and chemical pecularities of the PGM association occurring in the studied concentrate, it seems highly probable that its primary source should be an Alaskan-type intrusion.
Platingruppen Minerale aus dem Alluvium der Durance, Frankreich
Zusammenfassung Minerale der Platingruppe wurden im Zuge von Goldgewinnung im Alluvium der Durance in der Nähe von Peyrolles (Bouches-du-Rhône) entdeckt. Die PGM Körner (durchschnittliche Korngröße 130m) sind flach gepreßt (durchschnittliche Dicke 64m). Die PGM Konzentrate bestehen vorwiegend aus (Pt, Fe) Legierungen (92%); (Os, Ir, Ru) Legierungen (3,5%), sowie gediegen Gold und (Au, Cu, Ag) Legierungen (4,5%). Folgende Minerale wurden beobachtet:Isoferro-Platin, Fe-Platin, gediegen Osmium, gediegen Iridium, Iridosmium, Rutheniridosmium, Osmiridium, Ru-Osmium, Os-Ruthenium, Cuprorhodsit, Guanglinit, Shandit, Tetrauricuprit, gediegen Gold, Bornit, HeazIewoodit, (Pt, Pd)2 Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe), (Pd, Rh, Pt)2+xS2, (Pt, Pd)4+xCu2As1–x.Isoferro-Platin enthält zahlreiche Einschlüsse von Legierungen, Sulfiden, Arseniden, Pd-Telluriden und teilweise devitrifzierte Silikatglaströpfchen. Die meisten nichtsili katischen Einschlüsse sind ebenfalls tröpfchenförmig. Dies weist darauf hin, daß sie in flüssigem Zustand eingeschlossen wurden.Cuprorhodsitkristalle (bis zu 20m) sind gemeinsam mit Bornit in Pt3 Fe einge schlossen. Selten sind Pd- und Cu-Sulfide, sowie Pd-Telluride mit diesen vergesellschaftet. Bei den komplexen tröpfehenförmigen Arsenideinschlüssen im Isoferro-Platin handelt es sich um Pt-führenden Guanglinit und (Pt, Pd)4+xCu2 As1–x. Gediegen Iridium zeigt Entmischung von Ir-führendem Isoferro-Platin und (Pt, Pd)2Cu3. Stellenweise wurden Konzentrationen von Sn (bis zu 3%) in den (Au, Cu) Legierungen beobachtet. Shandit und (Ni, Pt) Sn Einschlüsse kommen in (Au, Cu, Ag) Legierungen vor. Silikatische Glaseinschlüsse sind TiO2-arm und manchmal K-reich (im Shoshonitfeld liegend).Auf Grund der mineralogischen und chemischen Eigenheiten der untersuchten PGM Konzentrate ist eine Intrusion des Alaska-Typs als primäre Quelle sehr wahrscheinlich.


With 4 Figures and 2 Plates  相似文献   

12.
Voluminous platinum-group mineral(PGM) inclusions including erlichmanite(Os,Ru)S_2, laurite(Ru,Os)S_2, and irarsite(Ir,Os,Ru,Rh)As S, as well as native osmium Os(Ir) and inclusions of base metal sulphides(BMS), including millerite(NiS), heazlewoodite(Ni_3S_2), covellite(CuS) and digenite(Cu_3S_2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 μm in size and vary in shape from euhedral to anhedral. They occur either as single or composite(biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides(such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of ?S_2 and ?O_2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low ?S_2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and ?S_2 increased. The abundance of primary BMS in the chromitites suggests that ?S_2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.  相似文献   

13.
New data are reported on the localization and genesis of PGE mineralization at the South Sopcha deposit situated in the southern framework of the Monchegorsk pluton. Disseminated PGE-Cu-Ni mineralization, the thickness of which in particular boreholes exceeds 100 m, is hosted in the zone of alternating peridotite, pyroxenite, norite, and gabbronorite. The PGE grade does not exceed 1?C2 gpt with Pd/Pt = 3?C4 at Ni and Cu contents from 0.2 to 1.5 wt %. The PGE contents up to 4?C6 gpt and Pd/Pt = 4?C8 are noted at local sites of hydrothermally altered rocks. Another type of PGE mineralization is established in the outcrops of the southeastern marginal group of the massif. Pyroxenite, norite, and gabbronorite fragments are incorporated here in the gabbroic matrix, making up a complex zone of magmatic breccia complicated by mylonites and late injections. Elevated PGE contents (1.0?C6.5 gpt) are detected in all types of rocks in the zone of brecciation, mainly in the matrix. Platinum-group minerals (PGM) occur in association with magmatic and late sulfides, amphibole, mica, and chlorite. PGM vary in composition depending on the petrographic features of rocks. In rocks of the layered series and in pegmatoid pyroxenite PGM are extremely diverse comprising PGE compounds with As, Sb, Bi, Te, Se, and S. In the brecciated rocks of the marginal group, Pd bismuthotellurides (mainly merenskyite), sperrylite, hollingworthite, and Pd- and Rh-bearing cobaltite and gersdorffite are predominant. The PGE mineralization in rocks of the layered series and pegmatoid pyroxenite was formed from the magmatic melt enriched in volatiles and with subsequent transformation of PGE assemblages under the influence of hydrothermal fluids at a lower temperature. In gabbroic rocks of the marginal group, PGM are associated with the latest sulfides (chalcopyrite, bornite, chalcocite), forming separate grains and thin veinlets in hydrothermally altered rocks. The gabbroic melt affected incompletely crystallized rocks of the layered series by formation of contact-type PGE mineralization, deposition and redeposition of ore matter.  相似文献   

14.
The W Horizon, Marathon Cu-Pd deposit in the Mesoproterozoic Midcontinent rift is one of the highest grade PGE repositories in magmatic ore deposits world-wide. The textural relationships and compositions of diverse platinum-group mineral (PGM) and sulfide assemblages in the extremely enriched ores (>100 ppm Pd-Pt-Au over 2 m) of the W Horizon have been investigated in mineral concentrates with ∼10,000 PGM grains and in situ using scanning electron microprobe and microprobe analyses.Here we show, from ore samples with concentrations up to 23.1 Pd ppm, 8.9 Pt ppm, 1.4 Au ppm and 0.73 Rh ppm, the diversity of minerals (n = 52) including several significant unknown minerals and three new mineral species marathonite (Pd25Ge9; McDonald et al., 2016), palladogermanide (Pd2Ge; IMA 2016-086, McDonald et al., 2017), kravtsovite (PdAg2S, IMA No 2016-092, Vymazalová et al., 2017). The PGM are distributed as PG-, sulfides (52 vol%), -arsenides (34 vol%), -intermetallics of Au-Ag-Pd-Cu and Pd-Ge(10 vol%) and -bismuthides and tellurides (4 vol%). The discovery of abundant (>330 grains) large unknown sulfide minerals with Rh allows us to present analyses three significant potentially new minerals (WUK-1, WUK-2, WUK-3) that are all clearly enriched in Rh (averaging 4.2, 8.5 and 28.21 wt% Rh respectively). Several examples of paragenetic sequences and mineral chemical changes for enrichment of Cu, Pd and Rh with time are revealed in the PGM and base-metal sulfides. We suggest this enhanced metal enrichment formed in response to increasing fO2 causing the oxidation of Fe2+ to Fe3+ and to a lesser extent, S.Phase relations in the Ag-Pd-S, Rh-Ni-Fe-S, Pd-Ge, Au-Pd-Cu-Ag, Pd-Ag-Te systems help constrain the crystallization temperatures of the majority of ore minerals in the W Horizon at ∼500 °C or moderate to high subsolidus temperatures (400–600 °C). Local transport by aqueous fluids becomes evident as minerals recrystallize down to <300 °C. The PGE-enriched W Horizon ores exhibit a complex post-magmatic history dominated by the effects of oxidation during cooling of a Cu-PGE enriched magma source from a deep reservoir.  相似文献   

15.
Summary In the serpentinizedophiolitic rocks from Skyros island, two distinct assemblages of base metal sulphides (BMS) and platinum-group minerals (PGM) occur. The first (early) generation is associated with chromitites which are enriched in platinum-group elements (PGE). The highest values were recorded in samples from Achladones (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; all values in ppb). Mineral inclusions in chromite consist of Ni-Fe sulphides and Os-rich laurite, and crystallized at high sulphur fugacity (fS2) during chromite formation. The second (late) generation is closely associated with Au-rich, PGE-poor magnetite ores which host a complex assemblage of inclusions consisting mainly of graphite, Cu-Fe- and pure Cu sulphides, sperrylite and tetraauricupride. Their accompanying hydrous silicates are Cl-bearing. It is assumed that this mineral assemblage was deposited by hydrothermal processes during serpentinization.
Minerale der Platingruppe und Tetraauricuprid in Ophiolithen der Insel Skyros, Griechenland
Zusammenfassung In den serpentinisierten Ophiolithen der Insel Skyros wurden zwei unterschiedliche Bildungsgenerationen von Sulfiden (BMS) und Platinmineralen (PGM) festgestellt. Die erste (frühere) Generation ist an Chromitite gebunden, die hohe Gehalte an Elementen der Platingruppe (PGE) aufweisen. Die höchsten PGE-Kontzentrationen wurden in den Proben der Lokalität Achladones gefunden (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; alle Gehalte in ppb). Die Einschlüsse in Chromit bestehen aus Ni-Fe Sulfiden und Os-reichem Laurit. Diese Minerale kristallisierten bei hoher Schwefelfugazität (fS2) während der Bildung der Chromite. Die zweite (spätere) Generation ist eng assoziiert mit Au-reichen und PGE-armen Magnetiten. Sie führen eine komplexe Einschluß-Paragenese bestehend aus Graphit, Cu-Fe- und reinen Cu Sulfiden sowie Sperrylith und Tetraauricuprid. Die begleitenden Hydrosilikate sind Cl-haltig. Die Bildung dieser Mineralparagenese wird durch hydrothermale Prozesse während der Serpentinisierung erklärt.


With 8 Figures  相似文献   

16.
In this paper we present textural and mineral chemistry data for a PGM inclusion assemblage and whole-rock platinum-group element (PGE) concentrations of chromitite from Harold’s Grave, which occurrs in a dunite pod in a mantle tectonite at Unst in the Shetland Ophiolite Complex (SOC), Scotland. The study utilized a number of analytical techniques, including acid digestion and isotope dilution (ID) ICP-MS, hydroseparation and electron microprobe analysis. The chromitite contains a pronounced enrichment of refractory PGE (IPGE: Os, Ir and Ru) over less refractory PGE (PPGE: Rh, Pt and Pd), typical of mantle hosted ‘ophiolitic’ chromitites. A ‘primary’ magmatic PGM assemblage is represented by euhedrally shaped (up to 60 μm in size) single and composite inclusions in chromite. Polyphase PGM grains are dominated by laurite and osmian iridium, with subordinate laurite + osmian iridium + iridian osmium and rare laurite + Ir-Rh alloy + Rh-rich sulphide (possibly prassoite). The compositional variability of associated laurite and Os-rich alloys at Harold’s Grave fit the predicted compositions of experiment W-1200-0.37 of Andrews and Brenan (Can Mineral 40: 1705–1716, 2002) providing unequivocal information on conditions of their genesis, with the upper thermal stability of laurite in equilibrium with Os-rich alloys estimated at 1200–1250 °C and f(S2) of 10?0.39–10?0.07.  相似文献   

17.
In the Great Dyke mafic/ultramafic layered intrusion of Zimbabwe, economic concentrations of platinum-group elements (PGE) are restricted to sulfide disseminations in pyroxenites of the Main Sulfide Zone (MSZ). Oxidized ores near the surface constitute a resource of ca. 400 Mt. Mining of this ore type has so far been hampered due to insufficient recovery rates. During the oxidation/weathering of the pristine ores, most notably, S and Pd are depleted, whereas Cu and Au are enriched. The concentrations of most other elements (including the other PGE) remain quite constant. In the oxidized MSZ, PGE occur in different modes: (1) as relict primary PGM (mainly sperrylite, cooperite, and braggite), (2) in solid solution in relict sulfides (dominantly Pd in pentlandite, up to 6,500 ppm Pd and 450 ppm Pt), (3) as secondary PGM neoformations (i.e., Pt–Fe alloy and zvyagintsevite), (4) as PGE oxides/hydroxides that replace primary PGM as the result of oxidation, (5) hosted in weathering products, i.e., iron oxides/hydroxides (up to 3,600 ppm Pt and 3,100 ppm Pd), manganese oxides/hydroxides (up to 1.6 wt.% Pt and 1,150 ppm Pd), and in secondary phyllosilicates (up to a few hundred ppm Pt and Pd). In the oxidized MSZ, most of the Pt and Pd are hosted by relict primary and secondary PGM; subordinate amounts are found in iron and manganese oxides/hydroxides. The amount of PGE hosted in solid solution in sulfides is negligible. Considerable local variations in the distribution of PGE in the oxidized ores complicate a mineralogical balance. Experiments to evaluate the PGE recovery from oxidized MSZ ore show that using physical concentration techniques (i.e., electric pulse disaggregation, hydroseparation, and magnetic separation), the PGE are preferentially concentrated into smaller grain size fractions by a factor of 2. Highest PGE concentrations occur in the volumetrically insignificant magnetic fraction. This indicates that a physical preconcentration of PGE is not feasible and that chemical, bulk-leaching methods need to be developed in order to successfully recover PGE from oxidized MSZ ore.  相似文献   

18.
The Dobromirtsi Ultramafic Massif, located in the Rhodope Mountains (SE Bulgaria), is a portion of a Paleozoic sub-oceanic mantle affected by polyphase regional metamorphism. This massif contains several small, podiform chromitite bodies which underwent the same metamorphic evolution as their host peridotites. Like other ophiolite chromitites, those found in Dobromirtsi carry abundant platinum-group minerals (PGM) and base-metal minerals (BMM). The PGM consist mainly of Ru-, Os-, and Ir-based PGM (laurite RuS2-erlichmanite OsS2, Os-Ru-Ir alloys, irarsite [IrAsS], Ru-rich pentlandite, and an unknown Ir-sulfide) but minor Rh- and Pd-based PGM (hollingworthite [RhAsS] and a series of unidentified stannides and sulfantimonides) are also present. In contrast, the BMM are dominated by pentlandite (Ni,Fe)9S8, followed by heazlewoodite (Ni3S2), breithauptite (NiSb), maucherite (Ni11As8), godlevskite (Ni7S6), gersdorffite (NiAsS), millerite (NiS), undetermined minerals containing Ni, As and Sb, orcelite (Ni5-XAs2), awaruite (Ni3Fe) and chalcopyrite (CuFeS2). The detailed study of the textural relationships, morphology and composition of the PGM and BMM inclusions indicate the existence of two different PGM-BMM assemblages: (i) a primary or magmatic; and (ii) a secondary related with postmagmatic alteration. The PGM and BMM inclusions in unaltered zones of chromite crystals (mainly laurite-erlichmanite and pentlandite) are considered to be primary magmatic minerals formed under variable temperature (1200–1100°C) and sulfur fugacity (between −2 and −0.5 log fS2). In contrast, PGM and BMM located along altered edges of chromite and serpentinised silicate matrix are considered to be secondary, formed from or re-equilibrated with altering fluids. Secondary PGM and BMM assemblages are considered as result of the combination of reducing and oxidising events related with regional metamorphism. Under low fO2 states, fS2 also drops giving place to the formation of S-poor Ni-rich sulfides and secondary Ru-alloys by desulfurisation of primary S-containing minerals. In contrast, predominance of platinum-group elements and/or base-metal arsenides and sulfarsenides associated with the altered edges of chromite (chromite strongly enriched in Fe2O3) is related with the fixing of remobilised PGE (mainly Ir, Rh and Pd) and base-metals (mainly Ni and Fe) when late oxidising fluids supplied As as well as Sb and Sn.  相似文献   

19.
The concentrations of Ir, Ru, Pt and Pd have been determined in 29 Mid-Oceanic Ridge basaltic (MORB) glasses from the Pacific (N = 7), the Atlantic (N = 10) and the Indian (N = 11) oceanic ridges and the Red Sea (N = 1) spreading centers. The effect of sulfide segregation during magmatic differentiation has been discussed with sample suites deriving from parental melts produced by high (16%) and low (6%) degrees of partial melting, respectively. Both sample suites define positive and distinct covariation trends in platinum-group elements (PGE) vs. Ni binary plots. The high-degree melting suite displays, for a given Ni content, systematically higher PGE contents relative to the low-degree melting suite. The mass fraction of sulfide segregated during crystallization (Xsulf), the achievement of equilibrium between sulfide melt and silicate melts (Reff), and the respective proportions between fractional and batch crystallization processes (Sb) are key parameters for modeling the PGE partitioning behavior during S-saturated MORB differentiation. Regardless of the model chosen, similar sulfide melt/silicate melt partition coefficients for Ir, Ru, Pt and Pd are needed to model the sulfide segregation process, in agreement with experimental data. When corrected for the effect of magmatic differentiation, the PGE data display coherent variations with partial melting degrees. Iridium, Ru and Pt are found to be compatible in nonsulfide minerals whereas the Pd behaves as a purely chalcophile element. The calculated partition coefficients between mantle sulfides and silicate melts (assuming a PGE concentration in the oceanic mantle at ∼0.007 × CI-chondritic abundances) increase from Pd (∼103) to Ir (∼105). This contrasting behavior of PGE during S-saturated magmatic differentiation and mantle melting processes can be accounted for by assuming that Monosufide Solid Solution (Mss) controls the PGE budget in MORB melting residues whereas MORB differentiation processes involve Cu-Ni-rich sulfide melt segregation.  相似文献   

20.
Magmatic sulfide deposits consist of pyrrhotite, pentlandite, chalcopyrite (± pyrite), and platinum-group minerals (PGM). Understanding the distribution of the chalcophile and platinum-group element (PGE) concentrations among the base metal sulfide phases and PGM is important both for the petrogenetic models of the ores and for the efficient extraction of the PGE. Typically, pyrrhotite and pentlandite host much of the PGE, except Pt which forms Pt minerals. Chalcopyrite does not host PGE and the role of pyrite has not been closely investigated. The Ni–Cu–PGE ores from the South Range of Sudbury are unusual in that sulfarsenide PGM, rather than pyrrhotite and pentlandite, are the main carrier of PGE, probably as the result of arsenic contribution to the sulfide liquid by the As-bearing metasedimentary footwall rocks. In comparison, the North Range deposits of Sudbury, such as the McCreedy East deposit, have As-poor granites in the footwall, and the ores commonly contain pyrite. Our results show that in the pyrrhotite-rich ores of the McCreedy East deposit Os, Ir, Ru, Rh (IPGE), and Re are concentrated in pyrrhotite, pentlandite, and surprisingly in pyrite. This indicates that sulfarsenides, which are not present in the ores, were not important in concentrating PGE in the North Range of Sudbury. Palladium is present in pentlandite and, together with Pt, form PGM such as (PtPd)(TeBi)2. Platinum is also found in pyrite. Two generations of pyrite are present. One pyrite is primary and locally exsolved from monosulfide solid solution (MSS) in small amounts (<2 wt.%) together with pyrrhotite and pentlandite. This pyrite is unexpectedly enriched in IPGE, As (± Pt) and the concentrations of these elements are oscillatory zoned. The other pyrite is secondary and formed by alteration of the MSS cumulates by late magmatic/hydrothermal fluids. This pyrite is unzoned and has inherited the low concentrations of IPGE and Re from the pyrrhotite and pentlandite that it has replaced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号