首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the phase-locking of El Nino Southern Oscillation (ENSO) in a coupled model with different physical parameter values is investigated. It is found that there is a dramatic change in ENSO phase-locking in response to a slight change in the Tokioka parameter, which is a minimum entrainment rate threshold in the cumulus parameterization. With a smaller Tokioka parameter, the model simulates ENSO peak in the boreal summer season rather than in the winter season as observed. It is revealed that the differences in climatological zonal sea surface temperature (SST) gradient and its associated mean state changes are crucial to determine the phase-locking of ENSO. In the simulations with smaller Tokioka parameter values, climatological zonal SST gradient during the boreal summer is excessively large, because the zonally-asymmetric SST change (i.e., SST increase is relatively smaller over the eastern Pacific) is maximum during the boreal summer when the eastern Pacific SST is the coolest of the year. The enhanced climatological zonal SST gradient in boreal summer reduces the convection over the eastern Pacific, which leads to a weakening of air–sea coupling strength. The minimum coupling strength during summer prevents SST anomalies from further development in the following season, which favors SST maximum during summer. In addition, enhanced zonal SST gradient and resultant thermocline shoaling over the eastern Pacific lead to excessive zonal advective feedback and thermocline feedback. Atmospheric damping is also weakened during boreal summer season. These changes due to feedback processes allow an excessive development of SST anomalies during the summer time, and lead to a summer peak of ENSO. The importance of basic state change for the ENSO phase-locking is also validated in a multi-model framework using the Coupled Model Intercomparison Project phase-3 archive. It is found that several of the climate models have the same problem in producing a summer peak of ENSO. Consistent with the simulations with different physical parameter values, these models have minimum air–sea coupling strength during the boreal summer season. Also, they have stronger climatological zonal SST gradient and shallower climatological thermocline depth over the eastern Pacific during the boreal summer season.  相似文献   

2.
The influence of ocean–atmosphere coupling on the simulation and prediction of the boreal winter Madden–Julian Oscillation (MJO) is examined using the Seoul National University coupled general circulation model (CGCM) and atmospheric—only model (AGCM). The AGCM is forced with daily SSTs interpolated from pentad mean CGCM SSTs. Forecast skill is examined using serial extended simulations spanning 26 different winter seasons with 30-day forecasts commencing every 5 days providing a total of 598 30-day simulations. By comparing both sets of experiments, which share the same atmospheric components, the influence of coupled ocean–atmosphere processes on the simulation and prediction of MJO can be studied. The mean MJO intensity possesses more realistic amplitude in the CGCM than in AGCM. In general, the ocean–atmosphere coupling acts to improve the simulation of the spatio-temporal evolution of the eastward propagating MJO and the phase relationship between convection (OLR) and SST over the equatorial Indian Ocean and the western Pacific. Both the CGCM and observations exhibit a near-quadrature relationship between OLR and SST, with the former lagging by about two pentads. However, the AGCM shows a less realistic phase relationship. As the initial conditions are the same in both models, the additional forcing by SST anomalies in the CGCM extends the prediction skill beyond that of the AGCM. To test the applicability of the CGCM to real-time prediction, we compute the Real-time Multivariate MJO (RMM) index and compared it with the index computed from observations. RMM1 (RMM2) falls away rapidly to 0.5 after 17–18 (15–16) days in the AGCM and 18–19 (16–17) days in the CGCM. The prediction skill is phase dependent in both the CGCM and AGCM.  相似文献   

3.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   

4.
In a recent study it was illustrated that the El Nino Southern Oscillation (ENSO) mode can exist in the absence of any ocean dynamics. This oscillating mode exists just due to the interaction between atmospheric heat fluxes and ocean heat capacity. The primary purpose of this study is to further explore these atmospheric Slab Ocean ENSO dynamics and therefore the role of positive atmospheric feedbacks in model simulations and observations. The positive solar radiation feedback to sea surface temperature (SST), due to reduced cloud cover for anomalous warm SSTs, is the main positive feedback in the Slab Ocean El Nino dynamics. The strength of this positive cloud feedback is strongly related to the strength of the equatorial cold tongue. The combination of positive latent and sensible heat fluxes to the west and negative ones to the east of positive anomalies leads to the westward propagation of the SST anomalies, which allows for oscillating behavior with a preferred period of 6–7 years. Several indications are found that parts of these dynamics are indeed observed and simulated in other atmospheric or coupled general circulation models (AGCMs or CGCMs). The CMIP3 AGCM-slab ensemble of 13 different AGCM simulations shows unstable ocean–atmosphere interactions along the equatorial Pacific related to stronger cold tongues. In observations and in the CMIP3 and CMIP5 CGCM model ensemble the strength and sign of the cloud feedback is a function of the strength of the cold tongue. In summary, this indicates that the Slab Ocean El Nino dynamics are indeed a characteristic of the equatorial Pacific climate that is only dominant or significantly contributing to the ENSO dynamics if the SST cold tongue is sufficiently strong. In the observations this is only the case during strong La Nina conditions. The presence of the Slab Ocean ENSO atmospheric feedbacks in observations and CGCM model simulations implies that the family of physical ENSO modes does have another member, which is entirely driven by atmospheric processes and does not need to have the same spatial pattern nor the same time scales as the main ENSO dynamics.  相似文献   

5.
气候系统模式FGOALS_gl模拟的赤道太平洋年际变率   总被引:4,自引:1,他引:3  
满文敏  周天军  张丽霞 《大气科学》2010,34(6):1141-1154
本文分析了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室 (LASG/IAP) 发展的气候系统模式FGOALS_gl对赤道太平洋年际变率的模拟能力。结果表明, FGOALS_gl可以较好地模拟出赤道太平洋SST异常年际变率的主要特征, 但模拟的ENSO事件振幅偏大, 且变率周期过于规则。耦合模式模拟的气候平均风应力在热带地区比ERA40再分析资料的风应力强度偏弱30%左右, 由此引起的海洋平均态的变化, 是造成模拟的ENSO振幅偏强的主要原因。FGOALS_gl模拟的ENSO峰值多出现在春季或夏季, 原因可归之于模式模拟的SST季节循环偏差。耦合模式可以合理再现ENSO演变过程, 但观测中SST异常的东传特征在模式中没有得到再现, 这与模拟的ENSO发展模态表现为单一的 “SST模态” 有关。模拟的ENSO位相转换机制与 “充电—放电” 概念模型相符合, 赤道太平洋热含量的变化是维持ENSO振荡的机制。在ENSO暖位相时期, 赤道中东太平洋与印度洋—西太平洋暖池区的海平面气压距平型表现为南方涛动型 (SO型), 200 hPa位势高度分布表现为太平洋—北美遥相关型 (PNA型)。  相似文献   

6.
The interannual variations of intensity of the Madden-Julian Oscillation (MJO) during boreal winter are investigated by using the observed outgoing longwave radiation (OLR) and the reanalysis data of ECMWF and NCEP. The standard deviation of 20-80-day filtered OLR anomaly is used to measure the MJO intensity. The dominant spatial structure of the interannual variability is revealed by an EOF analysis of the MJO intensity field. It is found that the leading mode is associated with eastern Pacific type ENSO, whereas the second mode is related to central Pacific type ENSO. A simple atmospheric model is used to investigate the relative roles of background moisture and wind changes in affecting the overall strength of MJO. The numerical experiments indicate that the background moisture effect is dominant while the background wind change has a minor effect.  相似文献   

7.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??.  相似文献   

8.
In this study, the El Nino-Southern Oscillation (ENSO) phase-locking to the boreal winter in CMIP3 and CMIP5 models is examined. It is found that the models that are poor at simulating the winter ENSO peak tend to simulate colder seasonal-mean sea-surface temperature (SST) during the boreal summer and associated shallower thermocline depth over the eastern Pacific. These models tend to amplify zonal advection and thermocline depth feedback during boreal summer. In addition, the colder eastern Pacific SST in the model can reduce the summertime mean local convective activity, which tends to weaken the atmospheric response to the ENSO SST forcing. It is also revealed that these models have more serious climatological biases over the tropical Pacific, implying that a realistic simulation of the climatological fields may help to simulate winter ENSO peak better. The models that are poor at simulating ENSO peak in winter also show excessive anomalous SST warming over the western Pacific during boreal winter of the El Nino events, which leads to strong local convective anomalies. This prevents the southward shift of El Nino-related westerly during boreal winter season. Therefore, equatorial westerly is prevailed over the western Pacific to further development of ENSO-related SST during boreal winter. This bias in the SST anomaly is partly due to the climatological dry biases over the central Pacific, which confines ENSO-related precipitation and westerly responses over the western Pacific.  相似文献   

9.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   

10.
The evolution of El Ni?o-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15?years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones.  相似文献   

11.
A noise reduction technique, namely the interactive ensemble (IE) approach is adopted to reduce noise at the air–sea interface due to internal atmospheric dynamics in a state-of-the-art coupled general circulation model (CGCM). The IE technique uses multiple realization of atmospheric general circulation models coupled to a single ocean general circulation model. The ensembles mean fluxes from the atmospheric simulations are communicated to the ocean component. Each atmospheric simulation receives the same SST coming from the ocean component. The only difference among the atmospheric simulations comes from perturbed initial conditions, thus the atmospheric states are, in principle synoptically independent. The IE technique can be used to better understand the importance of weather noise forcing of natural variability such as El Niño Southern Oscillation (ENSO). To study the impact of weather noise and resolution in the context of a CGCM, two IE experiments are performed at different resolutions. Atmospheric resolution is an important issue since the noise statistics will depend on the spatial scales resolved. A simple formulation to extract atmospheric internal variability is presented. The results are compared to their respective control cases where internal atmospheric variability is left unchanged. The noise reduction has a major impact on the coupled simulation and the magnitude of this effect strongly depends on the horizontal resolution of the atmospheric component model. Specifically, applying the noise reduction technique reduces the overall climate variability more effectively at higher resolution. This suggests that “weather noise” is more important in sustaining climate variability as resolution increases. ENSO statistics, dynamics, and phase asymmetry are all modified by the noise reduction, in particular ENSO becomes more regular with less phase asymmetry when noise is reduced. All these effects are more marked for the higher resolution case. In contrast, ENSO frequency is unchanged by the reduction in the weather noise, but its phase-locking to the annual cycle is strongly dependent on noise and resolution. At low resolution the noise structure is similar to the signal, whereas the spatial structure of the noise deviates from the spatial structure of the signal as resolution increases. It is also suggested that event-to-event differences are largely driven by atmospheric noise as opposed to chaotic dynamics within the context of the large-scale coupled system, suggesting that there is a well-defined “canonical” event.  相似文献   

12.
Increased evidence has shown the important role of Atlantic sea surface temperature (SST) in modulating the El Niño–Southern Oscillation (ENSO). Persistent anomalies of summer Madden–Julian Oscillation (MJO) act to link the Atlantic SST anomalies (SSTAs) to ENSO. The Atlantic SSTAs are strongly correlated with the persistent anomalies of summer MJO, and possibly affect MJO in two major ways. One is that an anomalous cyclonic (anticyclonic) circulation appears over the tropical Atlantic Ocean associated with positive (negative) SSTA in spring, and it intensifies (weakens) the Walker circulation. Equatorial updraft anomaly then appears over the Indian Ocean and the eastern Pacific Ocean, intensifying MJO activity over these regions. The other involves a high pressure (low pressure) anomaly associated with the North Atlantic SSTA tripole pattern that is transmitted to the mid- and low-latitudes by a circumglobal teleconnection pattern, leading to strong (weak) convective activity of MJO over the Indian Ocean. The above results offer new viewpoints about the process from springtime Atlantic SSTA signals to summertime atmospheric oscillation, and then to the MJO of tropical atmosphere affecting wintertime Pacific ENSO events, which connects different oceans.  相似文献   

13.
The El Niño-Southern Oscillation (ENSO) is investigated in a multicentury integration conducted with the coupled general circulation model (CGCM) ECHAM3/LSG. The quasiperiodic interannual oscillations of the simulated equatorial Pacific climate system are due to subsurface temperature anomaly propagation and a positive atmosphere-ocean feedback. The gravest internal wave modes contribute to the generation of these anomalies. The simulated ENSO has a characteristic period of 5–8 years. Due to the coarse resolution of the ocean model the ENSO amplitude is underestimated by a factor of three as compared to observations. The model ENSO is associated with the typical atmospheric teleconnection patterns. Using wavelet statistics two characteristic interdecadal modulations of the ENSO variance are identified. The origins of a 22 and 35?y ENSO modulation as well as the characteristic ENSO response to greenhouse warming simulated by our model are discussed.  相似文献   

14.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

15.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

16.
El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs   总被引:2,自引:0,他引:2  
The characteristics of the El-Nino Southern Oscillation (ENSO) simulated in free integrations using two versions of the Seoul National University (SNU) ocean–atmosphere coupled global climate model (CGCM) are examined. A revised version of the SNU CGCM is developed by incorporating a reduced air–sea coupling interval (from 1?day to 2?h), a parameterization for cumulus momentum transport, a minimum entrainment rate threshold for convective plumes, and a shortened auto-conversion time scale of cloud water to raindrops. With the revised physical processes, lower tropospheric zonal wind anomalies associated with the ENSO-related sea surface temperature anomalies (SSTA) are represented with more realism than those in the original version. From too weak, the standard deviation of SST over the eastern Pacific becomes too strong in the revised version due to the enhanced air–sea coupling strength and intraseasonal variability associated with ENSO. From the oceanic side, the stronger stratification and the shallower-than-observed thermocline over the eastern Pacific also contribute to the excessive ENSO. The impacts of the revised physical processes on the seasonal predictability are investigated in two sets of the hindcast experiment performed using the two versions of CGCMs. The prediction skill measured by anomaly correlation coefficients of monthly-mean SSTA shows that the new version has a higher skill over the tropical Pacific regions compared to the old version. The better atmospheric responses to the ENSO-related SSTA in the revised version lead to the basin-wide SSTA maintained and developed in a manner that is closer to observations. The symptom of an excessively strong ENSO of the new version in the free integration is not prominent in the hindcast experiment because the thermocline depth over the eastern Pacific is maintained as initialized over the arc of time of the hindcast (7?months).  相似文献   

17.
The bio-physical feedback process between the marine ecosystem and the tropical climate system is investigated using both an ocean circulation model and a fully-coupled ocean–atmosphere circulation model, which interact with a biogeochemical model. We found that the presence of chlorophyll can have significant impact on the characteristics of the El Niño-Southern Oscillation (ENSO), including its amplitude and asymmetry, as well as on the mean state. That is, chlorophyll generally increases mean sea surface temperature (SST) due to the direct biological heating. However, SST in the eastern equatorial Pacific decreases due to the stronger indirect dynamical response to the biological effects outweighing the direct thermal response. It is demonstrated that this biologically-induced SST cooling is intensified and conveyed to other tropical-ocean basins when atmosphere–ocean coupling is taken into account. It is also found that the presence of chlorophyll affects the magnitude of ENSO by two different mechanisms; one is an amplifying effect by the mean chlorophyll, which is associated with shoaling of the mean thermocline depth, and the other is a damping effect derived from the interactively-varying chlorophyll coupled with the physical model. The atmosphere–ocean coupling reduces the biologically-induced ENSO amplifying effect through the weakening of atmospheric feedback. Lastly, there is also a biological impact on ENSO which enhances the positive skewness. This skewness change is presumably caused by the phase dependency of thermocline feedback which affects the ENSO magnitude.  相似文献   

18.
The mechanism of the South Pacific Ocean Dipole (SPOD) mode is examined, using a 50-year simulation of the Climate Forecast System, version 2 (CFSv2) and 50-year observation-based ocean–atmosphere analyses (1961–2010). It is shown that the SPOD, a sea surface temperatures (SST) seesaw between the subtropics and extratropics, is the dominant mode of the interannual variability in the South Pacific in both observations and CFSv2 simulation. CFSv2 also reproduces the seasonal phase-locking of the observed SPOD, with the anomaly pattern developing in austral spring, peaking in summer, and decaying in autumn. Composite analyses based on both observational and model data suggest that in the warm phase of SPOD, positive SST anomaly (SSTA) is initiated by weakened westerly winds over the central South Pacific in austral spring, which suppress the surface evaporative heat loss and reduce the oceanic mixed layer depth, both contributing to the SST warming. The wind-SST-mixed layer anomalies then evolve coherently over the next two seasons while the cold SSTA develops to the north. The wind perturbations are in turn a response to El Niño-Southern Oscillation (ENSO), which forces an atmospheric planetary wave train, the Pacific-South American pattern, emanating from an anomalous heat source in the tropical western Pacific. Moreover, SPOD is significantly correlated with the southern annular mode (SAM) while the latter is also significantly correlated with the ENSO index. This suggests that ENSO’s influence on the SPOD may be partially conveyed through SAM.  相似文献   

19.
Observations indicate that the Atlantic zonal mode influences El Ni?o Southern Oscillation (ENSO) in the Pacific, as already suggested in previous studies. Here we demonstrate for the first time using partial coupled experiments that the Atlantic zonal mode indeed influences ENSO. The partial coupling experiments are performed by forcing the coupled general circulation model (ECHAM5/MPI-OM) with observed sea surface temperature (SST) in the Tropical Atlantic, but with full air-sea coupling allowed in the Pacific and Indian Ocean. The ensemble mean of a five member simulation reproduces the observational results well. Analysis of observations, reanalysis, and coupled model simulations all indicate the following mechanism: SST anomalies associated with the Atlantic zonal mode affect the Walker Circulation, driving westward wind anomalies over the equatorial Pacific during boreal summer. The wind stress anomalies increase the east-west thermocline slope and enhance the SST gradient across the Pacific; the Bjerknes positive feedback acts to amplify these anomalies favouring the development of a La Ni?a-like anomalies. The same mechanisms act for the cold phase of Atlantic zonal mode, but with opposite sign. In contrast to previous studies, the model shows that the influence on ENSO exists before 1970. Furthermore, no significant influence of the Tropical Atlantic on the Indian Monsoon precipitation is found in observation or model.  相似文献   

20.
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号