首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hudson volcano (Chile) is the southern most stratovolcano of the Andean Southern Volcanic Zone and has produced some of the largest Holocene eruptions in South America. There have been at least 12 recorded Holocene explosive events at Hudson, with the 6700 years BP, 3600 years BP, and 1991 eruptions the largest of these. Hudson volcano has consistently discharged magmas of similar trachyandesitic and trachydacitic composition, with comparable anhydrous phenocryst assemblages, and pre-eruptive temperatures and oxygen fugacities. Pre-eruptive storage conditions for the three largest Holocene events have been estimated using mineral geothermometry, melt inclusion volatile contents, and comparisons to analogous high pressure experiments. Throughout the Holocene, storage of the trachyandesitic magmas occurred at depths between 0.2 and 2.7 km at approximately ~972°C (±25) and log fO2 −10.33–10.24 (±0.2) (one log unit above the NNO buffer), with between 1 and 3 wt% H2O in the melt. Pre-eruptive storage of the trachydacitic magma occurred between 1.1 and 2.0 km, at ~942°C (±26) and log fO2 −10.68 (±0.2), with ~2.5 wt% H2O in the melt. The evolved trachyandesitic and trachydacitic magmas can be derived from a basaltic parent primarily via fractional crystallization. Entrapment pressures estimated from plagioclase-hosted melt inclusions suggest relatively shallow levels of crystallization. However, trace element data (e.g., Dy/Yb ratio trends) suggests amphibole played an important role in the differentiation of the Hudson magmas, and this fractionation is likely to have occurred at depths >6 km. The absence of a garnet signal in the Hudson trace element data, the potential staging point for differentiation of parental mafic magmas [i.e., ~20 km (e.g., Annen et al. in J Petrol 47(3):505–539, 2006)], and the inferred amphibolite facies [~24 km (e.g., Rudnick and Fountain in Rev Geophys 33:267–309, 1995)] combine to place some constraint on the lower limit of depth of differentiation (i.e., ~20–24 km). These constraints suggest that differentiation of mantle-derived magmas occurred at upper-mid to lower crustal levels and involved a hydrous mineral assemblage that included amphibole, and generated a basaltic to basaltic andesitic composition similar to the magma discharged during the first phase of the 1991 eruption. Continued fractionation at this depth resulted in the formation of the trachyandesitic and trachydacitic compositions. These more evolved magmas ascended and stalled in the shallow crust, as suggested by the pressures of entrapment obtained from the melt inclusions. The decrease in pressure that accompanied ascent, combined with the potential heating of the magma body through decompression-induced crystallization would cause the magma to cross out of the amphibole stability field. Further shallow crystallization involved an anhydrous mineral assemblage and may explain the lack of phenocrystic amphibole in the Hudson suite.  相似文献   

2.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

3.
Hydrous K-rich kimberlite-like systems are studied experimentally at 5.5–7.5 GPa and 1200–1450?°C in terms of phase relations and conditions for formation and stability of phlogopite. The starting samples are phlogopite–carbonatite–phlogopite sandwiches and harzburgite–carbonatite mixtures consisting of Ol?+?Grt?+?Cpx?+?L (±Opx), according to the previous experimental results obtained at the same PT parameters but in water-free systems. Carbonatite is represented by a K- and Ca-rich composition that may form at the top of a slab. In the presence of carbonatitic melt, phlogopite can partly melt in a peritectic reaction at 5.5 GPa and 1200–1350?°C, as well as at 6.3–7.0 GPa and 1200?°C: 2Phl?+?CaCO3 (L)?Cpx?+?Ol?+?Grt?+?K2CO3 (L)?+?2H2O (L). Synthesis of phlogopite at 5.5 GPa and 1200–1350?°C, with an initial mixture of H2O-bearing harzburgite and carbonatite, demonstrates experimentally that equilibrium in this reaction can be shifted from right to left. Therefore, phlogopite can equilibrate with ultrapotassic carbonate–silicate melts in a?≥?150?°C region between 1200 and 1350?°C at 5.5 GPa. On the other hand, it can exist but cannot nucleate spontaneously and crystallize in the presence of such melts in quite a large pressure range in experiments at 6.3–7.0 GPa and 1200?°C. Thus, phlogopite can result from metasomatism of peridotite at the base of continental lithospheric mantle (CLM) by ultrapotassic carbonatite agents at depths shallower than 180–195 km, which creates a mechanism of water retaining in CLM. Kimberlite formation can begin at 5.5 GPa and 1350?°C in a phlogopite-bearing peridotite source generating a hydrous carbonate–silicate melt with 10–15 wt% SiO2, Ca# from 45 to 60, and high K enrichment. Upon further heating to 1450?°C due to the effect of a mantle plume at the CLM base, phlogopite disappears and a kimberlite-like melt forms with SiO2 to 20 wt% and Ca#?=?35–40.  相似文献   

4.
As shown by geological, mineralogical, and isotope geochemical data, trachybasaltic-trachytic-trachyrhyolitic (TTT) rocks from the Nyalga basin in Central Mongolia result from several eruptions of fractionated magmas within a short time span at about 120 Ma. Their parental basaltic melts formed by partial melting of mantle peridotite which was metasomatized and hydrated during previous subduction events. Basaltic trachyandesites have high TiO2 and K2O, relatively high P2O5, and low MgO contents, medium 87Sr/86Sr(0) ratios (0.70526-0.70567), and almost zero or slightly negative εNd(T) values. The isotope geochemical signatures of TTT rocks are typical of Late Mesozoic basaltic rocks from rift zones of Mongolia and Transbaikalia. The sources of basaltic magma at volcanic centers of Northern and Central Asia apparently moved from a shallower and more hydrous region to deeper and less hydrated lithospheric mantle (from spinel to garnet-bearing peridotite) between the Late Paleozoic and the latest Mesozoic. The geochemistry and mineralogy of TTT rocks fit the best models implying fractional crystallization of basaltic trachyandesitic, trachytic, and trachyrhyodacitic magmas. Mass balance calculations indicate that trachytic and trachydacitic magmas formed after crystallization of labradorite-andesine, Ti-augite, Sr-apatite, Ti-magnetite, and ilmenite from basaltic trachyandesitic melts. The melts evolved from trachytic to trachyrhyodacitic and trachyrhyolitic compositions as a result of prevalent crystallization of K-Na feldspar, with zircon, chevkinite-Ce, and LREE-enriched apatite involved in fractionation. Trachytic, trachyrhyodacitic, and trachyrhyolitic residual melts were produced by the evolution of compositionally different parental melts (basaltic trachyandesitic, trachytic, and trachyrhyodacitic, respectively), which moved to shallower continental crust and accumulated in isolated chambers. Judging by their isotopic signatures, the melts assimilated some crustal material, according to the assimilation and fractional crystallization (AFC) model.  相似文献   

5.
The crystallization sequence of a basaltic andesite from Bezymianny Volcano, Kamchatka, Russia, was simulated experimentally at 100 and 700 MPa at various water activities (aH2O) to investigate the compositional evolution of residual liquids. The temperature (T) range of the experiments was 950–1,150 °C, aH2O varied between 0.1 and 1, and the log of oxygen fugacity (fO2) varied between quartz–fayalite–magnetite (QFM) and QFM + 4.1. The comparison of the experimentally produced liquids and natural samples was used to constrain the pressure (P)TaH2O–fO2 conditions of the Bezymianny parental magma in the intra-crustal magma plumbing system. The phase equilibria constraints suggest that parental basaltic andesite magmas should contain ~2–2.5 wt% H2O; they can be stored in upper crustal levels at a depth of ~15 km, and at this depth they start to crystallize at ~1,110 °C. The subsequent chemical evolution of this parental magma most probably proceeded as decompressional crystallization occurred during magma ascent. The final depths at which crystallization products accumulated prior to eruption are not well constrained experimentally but should not be shallower than 3–4 km because amphibole is present in natural magmas (>150 MPa). Thus, the major volume of Bezymianny andesites was produced in a mid-crustal magma chamber as a result of decompressional crystallization of parental basaltic andesites, accompanied by mixing with silicic products from the earlier stages of magma fractionation. In addition, these processes are complicated by the release of volatiles due to magma degassing, which occurs at various stages during magma ascent.  相似文献   

6.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

7.
Dacites dominate the large-volume, explosive eruptions in magmatic arcs, and compositionally similar granodiorites and tonalites constitute the bulk of convergent margin batholiths. Shallow, pre-eruptive storage conditions are well known for many dacitic arc magmas through melt inclusions, Fe–Ti oxides, and experiments, but their potential origins deeper in the crust are not well determined. Accordingly, we report experimental results identifying the P–T–H2O conditions under which hydrous dacitic liquid may segregate from hornblende (hbl)-gabbroic sources either during crystallization–differentiation or partial melting. Two compositions were investigated: (1) MSH–Yn?1 dacite (SiO2: 65 wt%) from Mount St. Helens’ voluminous Yn tephra and (2) MSH–Yn?1?+?10% cpx to force saturation with cpx and map a portion of the cpx?+?melt?=?hbl peritectic reaction boundary. H2O-undersaturated (3, 6, and 9 wt% H2O) piston cylinder experiments were conducted at pressures, temperatures, and fO2 appropriate for the middle to lower arc crust (400, 700, and 900 MPa, 825–1100?°C, and the Re–ReO2 buffer?≈?Ni–NiO?+?2). Results for MSH–Yn?1 indicate near-liquidus equilibrium with a cpx-free hbl-gabbro residue (hbl, plg, magnetite, ± opx, and ilmeno-hematite) with 6–7 wt% dissolved H2O, 925?°C, and 700–900 MPa. Opx disappears down-temperature consistent with the reaction opx?+?melt?=?hbl. Cpx-added phase relations are similar in that once ~10% cpx crystallizes, multiple saturation is attained with cpx, hbl, and plg, +/? opx, at 6–7 wt% dissolved H2O, 940?°C, and 700–900 MPa. Plg–hbl–cpx saturated liquids diverge from plg–hbl–opx saturated liquids, consistent with the MSH–Yn?1 dacite marking a liquid composition along a peritectic distributary reaction boundary where hbl appears down-temperature as opx?+?cpx are consumed. The abundance of saturating phases along this distributary peritectic (liquid?+?hbl?+?opx?+?cpx?+?plg?+?oxides) reduces the variance, so liquids are restricted to dacite–granodiorite–tonalite compositions. Higher-K dacites than the Yn would also saturate with biotite, further limiting their compositional diversity. Theoretical evaluation of the energetics of peritectic melting of pargasitic amphiboles indicates that melting and crystallization of amphibole occur abruptly, proximal to amphibole’s high-temperature stability limit, which causes the system to dwell thermally under the conditions that produce dacitic compositions. This process may account for the compositional homogeneity of dacites, granodiorites, and tonalites in arc settings, but their relative mobility compared to rhyolitic/granitic liquids likely accounts for their greater abundance.  相似文献   

8.
Island arc basaltic rocks (basalts and basic andesites with SiO2 < 56.5%) from the Soufrière volcano. St. Vincent, West Indies (prehistoric lavas and 1902 and 1979 eruptions) underwent extensive fractional crystallization at various levels during the ascent of the magma. Although the precipitation of minerals occurring in coarse-grained cumulate inclusions dominated the derivation of basic andesites from basaltic magma, the distribution of the trace elements is not consistent with a simple fractional crystallization process. The lavas have a partially cumulate character and were probably generated from similar but separate parental magmas. The partition coefficients of transition and large ion lithophile elements are given for clinopyroxene, amphibole. olivine, plagioclase and titanomagnetite in basaltic liquid which crystallized under well-defined P-T conditions. The temperatures obtained from the geothermometers based upon the distribution of the major elements are in good agreement with the data from trace element geothermometers.  相似文献   

9.
Peralkaline syenite and granite dykes cut the Straumsvola nepheline syenite pluton in Western Dronning Maud Land, Antarctica. The average peralkalinity index (PI?=?molecular Al/[Na?+?K]) of the dykes is 1.20 (n?=?29) and manifests itself in the presence of the Zr silicates eudialyte, dalyite and vlasovite, and the Na–Ti silicate, narsarsukite. The dykes appear to have intruded during slow cooling of the nepheline syenite pluton, and the petrogenetic relationship of the dykes and the pluton cannot be related to closed-system processes at low pressure, given the thermal divide that exists between silica-undersaturated and oversaturated magmas. Major and trace element variations in the dykes are consistent with a combination of fractional crystallization of parental peralkaline magma of quartz trachyte composition, and internal mineral segregation prior to final solidification. The distribution of accessory minerals is consistent with late-stage crystallization of isolated melt pockets. The dykes give an Rb–Sr isochron age of 171?±?4.4 Ma, with variable initial 87Sr/86Sr ratio (0.7075?±?0.0032), and have an average ε Nd of ? 12.0. Quartz phenocrysts have δ18O values of 8.4–9.2‰, which are generally in O-isotope equilibrium with bulk rock. Differences in the δ18O values of quartz and aegirine (average Δquartz?aegirine = 3.5‰) suggest aegirine formation temperatures around 500 °C, lower than expected for a felsic magma, but consistent with poikilitic aegirine that indicates subsolidus growth. The negative ε Nd (< ? 10) and magma δ18O values averaging 8.6‰ (assuming Δquartz?magma = 0.6‰) are inconsistent with a magma produced by closed-system fractional crystallization of a mantle-derived magma. By contrast, the nepheline syenite magma had mantle-like δ18O values and much less negative ε Nd (average ??3.1, n?=?3). The country rock has similar δ18O values to the granite dykes (average 8.0‰, n?=?108); this means that models for the petrogenesis of the granites by assimilation are unfeasible, unless an unexposed high-δ18O contaminant is invoked. Instead, it is proposed that the peralkaline syenite and granite dykes formed by partial melting of alkali-metasomatised gneiss that surrounds the nepheline syenite, followed by fractional crystallization.  相似文献   

10.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   

11.
The alkalic pyroxenite nodule consists of megacrysts of diopside, apatite, perovskite and titanomagnetite in a groundmass consisting of diopside, apatite, titanomagnetite, nepheline, melilite, garnet and vishnevite crystals of various shapes, including previously undescribed skeletal and dendritic shapes, together with vesicles and residual glass. The residual glass is poor in SiO2 (38–40 wt%), and extraordinarily rich in Na2O (12.8–15 wt%), SO3 (1–1.5 wt%), and Cl (0.25–0.7 wt%), as a result of rapid, non-equilibrium crystallization of groundmass phases from a CO2-rich nephelinite melt.The Oldoinyo Lengai alkalic carbonatite lavas do not represent extreme products of the fractional crystallization of pyroxene, wollastonite, nepheline and alkali feldspar from the carbonated nephelinite melt. The most likely connection between the carbonatite and silicate magma types is one of liquid immiscibility, probably involving phonolite melt.  相似文献   

12.
The 3.7 ka year-old Averno 2 eruption is one of the rare eruptions to have occurred in the northwest sector of the Phlegraean Fields caldera (PFc) over the past 5 ka. We focus here on the fallout deposits of the pyroclastic succession emplaced during this eruption. We present major and trace element data on the bulk pumices, along with major and volatile element data on clinopyroxene-hosted melt inclusions, in order to assess the conditions of storage, ascent, and eruption of the feeding trachytic magma. Crystal fractionation accounts for the evolution from trachyte to alkali-trachyte magmas; these were intimately mingled (at the micrometer scale) during the climactic phase of the eruption. The Averno 2 alkali trachyte represents one of the most evolved magmas erupted within the Phlegraean Fields area and belongs to the series of differentiated trachytic magmas erupted at different locations 5 ka ago. Melt inclusions record significant variations in H2O (from 0.4 to 5 wt%), S (from 0.01 to 0.06 wt%), Cl (from 0.75 up to 1 wt%), and F (from 0.20 to >0.50 wt%) during both magma crystallization and degassing. Unlike the eruptions occurring in the central part of the PFc, deep-derived input(s) of gas and/or magma are not required to explain the composition of melt inclusions and the mineralogy of Averno 2 pumices. Compositional data on bulk pumices, glassy matrices, and melt inclusions suggest that the Averno 2 eruption mainly resulted from successive extrusions of independent magma batches probably emplaced at depths of 2–4 km along regional fractures bordering the Neapolitan Yellow Tuff caldera.  相似文献   

13.
A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity (\({f_{{{\text{o}}_2}}}\)), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase?+?pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (<?500 MPa; <~?20 km), glass-bearing andesites to dacites. The geobarometer utilizes rhyolite-MELTS to determine crystallization conditions in natural pumice and scoria samples. The validity of the geobarometer is tested by comparing it to results from experiments. Uncertainties are assessed using Monte Carlo simulations. We apply the geobarometer to the plag?+?opx?+?cpx-bearing system of Mt. Ruapehu, in the southern Taupo Volcanic Zone, New Zealand. The samples from Mt. Ruapehu are tested from ~?5 to ~?400 MPa and from super-liquidus to 90% crystalline (~ 1200 to ~ 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa (~?2.0 to 5.9 km) for different eruptions, with modes of 110 MPa (~ 4.3 km) and 130 MPa (~ 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with \({f_{{{\text{o}}_2}}}\) of ΔQFM ~ + 1 (NNO).  相似文献   

14.
Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (<1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.  相似文献   

15.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   

16.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

17.
Lead contents of S-type granites and their petrogenetic significance   总被引:2,自引:0,他引:2  
An evaluation of Pb and Ba contents in S-type granites can provide important information on the processes of crustal partial melting. Primary low-T S-type granites, which form mainly by fluid-absent muscovite melting, may acquire a significant enrichment in Pb when compared to higher-T S-type granites for a given Ba content. We consider the following factors are responsible for this enrichment: Muscovite is a major carrier of Pb in amphibolite facies metapelites, and thus large quantities of Pb can be liberated upon its breakdown. The typical restite assemblage of Qz?+?Bt?+?Sil?±?Pl?±?Grt?±?Kfsp that forms during low-T, fluid-absent muscovite melting can take up only minor amounts of this Pb. This is because the crystal/melt Pb distribution coefficients for these restite minerals are low to very low. Only K-feldspar is moderately compatible for Pb, with a crystal/melt distribution coefficient of ~3, but its modal content in restites is usually low. At the same time, the restite assemblage will retain much Ba owing to the very high Ba uptake in both biotite and K-feldspar, which is an order of magnitude higher than for Pb. Thus, during a low-T anatectic event involving a low degree of crustal melting, Pb (as an incompatible element) can become strongly enriched in the partial melt relative to Ba and also relative to source rock values. In the case of higher-T anatexis and larger partial melt amounts, the Pb becomes less enriched and the Ba less depleted or even enriched relative to source rock values. During fractional crystallization of a S-type granite magma, Ba behaves strongly compatibly and Pb weakly compatibly. The concentrations of both elements decrease along the liquid line of decent. Owing to this sympathetic fractionation behavior, the primary, source-related Pb–Ba fingerprint (with weak or strong Pb enrichment) remains in evolved S-type granites. This facilitates a distinction between primary low-T S-type granites, which are related to muscovite melting, and secondary low-T S-type granites that evolve through fractional crystallization from a higher-T parental magma. We show in this paper that a simple logarithmic Pb versus Ba diagram can be a valuable aid for interpreting the petrogenesis of S-type granite suites.  相似文献   

18.
The paper reports the first results of the petrological studies of magmatic melts that formed siliceous pyroclastic deposits related to voluminous eruptions on Iturup Island. The caldera-forming eruptions of the Lvinaya Past and the Vetrovoy Isthmus, having similar features, resulted from the evolution of silicic melts that originated from partial melting of metabasalts. According to the mineral thermometry results, the melt was crystallized at ~800°C. The phenocrysts from the Vetrovoy Isthmus pumices were crystallized at <1 kbar, while those from the Lvinaya Past were formed at higher pressures. The pyroclastic rock compositions in both calderas correspond to moderately aluminous dacite and rhyolitic dacite of the normal series, whose melts likely did not undergo significant crystallization differentiation before the eruptions. The main volatile components of the magma include H2O, CO2, S, F, and Cl. Degassing with emission of water–carbon-dioxide fluid accompanied the early crystallization of plagioclase in the Vetrovoy Isthmus pumice. Evidence of pre-eruption melt degassing in the Lvinaya Past were not found. Water release from the melts may be related to both the early magma degassing and the eruptions. The lack of data evidencing the deep differentiation and mixing of contrasting melts implies a relatively small time period between the acid melt appearance and eruptions.  相似文献   

19.
Changbaishan, an intraplate volcano, is characterized by an approximately 6 km wide summit caldera and last erupted in 1903. Changbaishan experienced a period of unrest between 2002 and 2006. The activity developed in three main stages, including shield volcano(basalts), cone-construction(trachyandesites to trachytes with minor basalts), and caldera-forming stages(trachytes to comendites). This last stage is associated with one of the more energetic eruptions of the last millennium on Earth, the 946 CE, VEI 7 Millennium Eruption(ME),which emitted over 100 km3 of pyroclastics. Compared to other active calderas, the plumbing system of Changbaishan and its evolution mechanisms remain poorly constrained. Here, we merge new whole-rock,glass, mineral, isotopic, and geobarometry data with geophysical data and present a model of the plumbing system. The results show that the volcano is characterized by at least three main magma reservoirs at different depths: a basaltic reservoir at the Moho/lower crust depth, an intermediate reservoir at 10–15 km depth, and a shallower reservoir at 0.5–3 km depth. The shallower reservoir was involved in the ME eruption, which was triggered by a fresh trachytic melt entering a shallower reservoir where a comenditic magma was stored. The trachytes and comendites originate from fractional crystallization processes and minor assimilation of upper crust material, while the less evolved melts assimilate lower crust material. Syn-eruptive magma mingling occurred during the ME eruption phase. The magma reservoirs of the caldera-forming stage partly reactivate those of the cone-construction stage. The depth of the magma storage zones is controlled by the layering of the crust.The plumbing system of Changbaishan is vertically extensive, with crystal mush reservoirs renewed by the replenishment of new trachytic to trachyandesitic magma from depth. Unlike other volcanoes, evidence of a basaltic recharge is lacking. The interpretation of the signals preceding possible future eruptions should consider the multi-level nature of the Changbaishan plumbing system. A new arrival of magma may destabilize a part of or the entire system, thus triggering eruptions of different sizes and styles. The reference model proposed here for Changbaishan represents a prerequisite to properly understand periods of unrest to potentially anticipate future volcanic eruptions and to identify the mechanisms controlling the evolution of the crust below volcanoes.  相似文献   

20.
Crystallization experiments were performed on quartz diorite (~55 wt.% SiO2, 3.1–8.4 wt.% MgO) from the G?siniec Intrusion (Bohemian Massif, SW Poland) at 1?2 kbar, 750–850°C, various mole fractions of water and with fO2 buffered by the NNO buffer. The two natural quartz diorites (leucocratic poikilitic quartz diorite - ‘LPD’ and melanocratic quartz diorite - ‘MD’) differ in whole rock and mineral composition with MD being richer in MgO and poorer in CaO than LPD, probably due to accumulation of mafic minerals or melt removal in MD. LPD represents melt composition and is used to reconstruct crystallization conditions in the G?siniec Intrusion. The crystallization history of LPD magma, deduced from experimental and natural mineral compositions, includes a higher pressure stage probably followed by emplacement at ~2 kbar of partly crystallized magma at temperatures ~850?800°C and quick cooling. The mineral assemblage present in LPD requires water contents in the magma of at least 5 wt% and oxygen fugacity below that controlled by the NNO buffer. The compositions of mafic minerals in the MD composition were equilibrated at temperatures below 775°C and at subsolidus conditions. The equilibration was probably due to the reaction between water-rich, oxidizing residual melt and the cumulatic-restitic mineral assemblage. MD is characterized by occurrence of the euhedral cummingtonite and increasing anorthite content in the rims of plagioclase. A similar reaction was reproduced experimentally in both LPD and MD compositions indicating that cummingtonite may be a late magmatic phase in quartz dioritic systems, crystallizing very close to solidus and only from water saturated magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号