首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A methodology is presented for providing projections of absolute future values of extreme weather events that takes into account key uncertainties in predicting future climate. This is achieved by characterising both observed and modelled extremes with a single form of non-stationary extreme value (EV) distribution that depends on global mean temperature and which includes terms that account for model bias. Such a distribution allows the prediction of future “observed” extremes for any period in the twenty-first century. Uncertainty in modelling future climate, arising from a wide range of atmospheric, oceanic, sulphur cycle and carbon cycle processes, is accounted for by using probabilistic distributions of future global temperature and EV parameters. These distributions are generated by Bayesian sampling of emulators with samples weighted by their likelihood with respect to a set of observational constraints. The emulators are trained on a large perturbed parameter ensemble of global simulations of the recent past, and the equilibrium response to doubled CO2. Emulated global EV parameters are converted to the relevant regional scale through downscaling relationships derived from a smaller perturbed parameter regional climate model ensemble. The simultaneous fitting of the EV model to regional model data and observations allows the characterisation of how observed extremes may change in the future irrespective of biases that may be present in the regional models simulation of the recent past climate. The clearest impact of a parameter perturbation in this ensemble was found to be the depth to which plants can access water. Members with shallow soils tend to be biased hot and dry in summer for the observational period. These biases also appear to have an impact on the potential future response for summer temperatures with some members with shallow soils having increases for extremes that reduce with extreme severity. We apply this methodology for London, using the A1B future emissions scenario to obtain projections of the 50 year return values for the 20 year period centred on 2050. We obtain 10th to 90th percentile ranges of 35.9–42.1 °C for summer daily maximum temperature, 35.5–52.4 mm for summer daily rainfall and 79.2, 97.0 mm for autumn 5 day total rainfall, compared to observed estimates for 1961–1990 of 35.7 °C, 42.1 and 78.4 mm respectively.  相似文献   

2.
This study extends a stochastic downscaling methodology to generation of an ensemble of hourly time series of meteorological variables that express possible future climate conditions at a point-scale. The stochastic downscaling uses general circulation model (GCM) realizations and an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). Marginal distributions of factors of change are computed for several climate statistics using a Bayesian methodology that can weight GCM realizations based on the model relative performance with respect to a historical climate and a degree of disagreement in projecting future conditions. A Monte Carlo technique is used to sample the factors of change from their respective marginal distributions. As a comparison with traditional approaches, factors of change are also estimated by averaging GCM realizations. With either approach, the derived factors of change are applied to the climate statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series of meteorological variables that can be considered to be representative of future climate conditions. In this study, the time series are generated in an ensemble mode to fully reflect the uncertainty of GCM projections, climate stochasticity, as well as uncertainties of the downscaling procedure. Applications of the methodology in reproducing future climate conditions for the periods of 2000–2009, 2046–2065 and 2081–2100, using the period of 1962–1992 as the historical baseline are discussed for the location of Firenze (Italy). The inferences of the methodology for the period of 2000–2009 are tested against observations to assess reliability of the stochastic downscaling procedure in reproducing statistics of meteorological variables at different time scales.  相似文献   

3.
There is increasing concern that avoiding climate change impacts will require proactive adaptation, particularly for infrastructure systems with long lifespans. However, one challenge in adaptation is the uncertainty surrounding climate change projections generated by general circulation models (GCMs). This uncertainty has been addressed in different ways. For example, some researchers use ensembles of GCMs to generate probabilistic climate change projections, but these projections can be highly sensitive to assumptions about model independence and weighting schemes. Because of these issues, others argue that robustness-based approaches to climate adaptation are more appropriate, since they do not rely on a precise probabilistic representation of uncertainty. In this research, we present a new approach for characterizing climate change risks that leverages robust decision frameworks and probabilistic GCM ensembles. The scenario discovery process is used to search across a multi-dimensional space and identify climate scenarios most associated with system failure, and a Bayesian statistical model informed by GCM projections is then developed to estimate the probability of those scenarios. This provides an important advancement in that it can incorporate decision-relevant climate variables beyond mean temperature and precipitation and account for uncertainty in probabilistic estimates in a straightforward way. We also suggest several advancements building on prior approaches to Bayesian modeling of climate change projections to make them more broadly applicable. We demonstrate the methodology using proposed water resources infrastructure in Lake Tana, Ethiopia, where GCM disagreement on changes in future rainfall presents a major challenge for infrastructure planning.  相似文献   

4.
This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM’s heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.  相似文献   

5.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   

6.
We apply an established statistical methodology called history matching to constrain the parameter space of a coupled non-flux-adjusted climate model (the third Hadley Centre Climate Model; HadCM3) by using a 10,000-member perturbed physics ensemble and observational metrics. History matching uses emulators (fast statistical representations of climate models that include a measure of uncertainty in the prediction of climate model output) to rule out regions of the parameter space of the climate model that are inconsistent with physical observations given the relevant uncertainties. Our methods rule out about half of the parameter space of the climate model even though we only use a small number of historical observations. We explore 2 dimensional projections of the remaining space and observe a region whose shape mainly depends on parameters controlling cloud processes and one ocean mixing parameter. We find that global mean surface air temperature (SAT) is the dominant constraint of those used, and that the others provide little further constraint after matching to SAT. The Atlantic meridional overturning circulation (AMOC) has a non linear relationship with SAT and is not a good proxy for the meridional heat transport in the unconstrained parameter space, but these relationships are linear in our reduced space. We find that the transient response of the AMOC to idealised CO2 forcing at 1 and 2 % per year shows a greater average reduction in strength in the constrained parameter space than in the unconstrained space. We test extended ranges of a number of parameters of HadCM3 and discover that no part of the extended ranges can by ruled out using any of our constraints. Constraining parameter space using easy to emulate observational metrics prior to analysis of more complex processes is an important and powerful tool. It can remove complex and irrelevant behaviour in unrealistic parts of parameter space, allowing the processes in question to be more easily studied or emulated, perhaps as a precursor to the application of further relevant constraints.  相似文献   

7.
We address the inverse problem of source reconstruction for the difficult case of multiple sources when the number of sources is unknown a priori. The problem is solved using a Bayesian probabilistic inferential framework in which Bayesian probability theory is used to derive the posterior probability density function for the number of sources and for the parameters (e.g., location, emission rate, release time and duration) that characterize each source. A mapping (source–receptor relationship) that relates a multiple source distribution to the concentration measurements made by an array of detectors is formulated based on a forward-time Lagrangian stochastic model. A computationally efficient methodology for determination of the likelihood function for the problem, based on an adjoint representation of the source–receptor relationship and realized in terms of a backward-time Lagrangian stochastic model, is described. An efficient computational algorithm based on a parallel tempered Metropolis-coupled reversible-jump Markov chain Monte Carlo (MCMC) method is formulated and implemented to draw samples from the posterior probability density function of the source parameters. This methodology allows the MCMC method to initiate jumps between the hypothesis spaces corresponding to different numbers of sources in the source distribution and, thereby, allows a sample from the full joint posterior distribution of the number of sources and the parameters for each source to be obtained. The proposed methodology for source reconstruction is tested using synthetic concentration data generated for cases involving two and three unknown sources.  相似文献   

8.
Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis   总被引:1,自引:0,他引:1  
Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.  相似文献   

9.
We consider the problem of projecting future climate from ensembles of regional climate model (RCM) simulations using results from the North American Regional Climate Change Assessment Program (NARCCAP). To this end, we develop a hierarchical Bayesian space-time model that quantifies the discrepancies between different members of an ensemble of RCMs corresponding to present day conditions, and observational records. Discrepancies are then propagated into the future to obtain high resolution blended projections of 21st century climate. In addition to blended projections, the proposed method provides location-dependent comparisons between the different simulations by estimating the different modes of spatial variability, and using the climate model-specific coefficients of the spatial factors for comparisons. The approach has the flexibility to provide projections at customizable scales of potential interest to stakeholders while accounting for the uncertainties associated with projections at these scales based on a comprehensive statistical framework. We demonstrate the methodology with simulations from the Weather Research & Forecasting regional model (WRF) using three different boundary conditions. We use simulations for two time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario, covering 2041 to 2070. We investigate and project yearly mean summer and winter temperatures for a domain in the South West of the United States.  相似文献   

10.
利用IAPGCM25年的积分结果,系统分析了模式的1、7月月平均气候,并与观测资料、OSUGCM和其它大气环流模式的模拟结果作了比较,所比较的变量包括大气基本变量即海平面气压、表面气温和降水以及与流场、加热场和水汽场有关的诸多变量。结果表明,模式成功地模拟出各种大气变量的分布特征,大多数变量的模拟结果要优于OSUGCM,从而证实模式对1、7月月平均气候有较好的模拟能力,特别是由于IAPGCM与OSUGCM两模式物理过程十分相似,这一结果还进一步证实了IAPGCM动力框架和计算方案的优良性能。模拟的主要误差包括南极槽偏浅、冰雪区表面气温偏高以及主要降雨区雨量偏大等,同时还分析了模拟误差的可能原因,提出了改进模式的一些设想。此外,计算并比较分析了模式中动量、感热和水汽的经向输送。  相似文献   

11.
This paper initiates a series of three articles on automatic calibration of operational multi-parameter models used for flash flood forecasting in automated regime. The main point expressed in this series is that proper calibration of even a single model for a single basin is not a trivial problem, but in automated forecasting systems, when thousands or even millions of basins should be parametrized simultaneously, priorities change. Now the computational efficiency becomes the most critical; an implemented calibration procedure must be fast and efficient rather than giving “the best“ parameters yet computationally expensive. The first article of the series contains critical analysis of the “mainstream“ in hydrological models calibration and presents basic principles of the Stepwise Line Search algorithm and its modifications, practically feasible and robust parametrization approaches that would be suitable for automated systems used for flash flood forecasting.  相似文献   

12.
Summary A combined GCM analogue model and GCM land surface representation is used to investigate the influences of climatology and land surface parameterisation on modelled Amazonian vegetation change. This modelling structure (called IMOGEN) captures the main features of the changes in surface climate as estimated by a GCM with enhanced atmospheric greenhouse gas concentrations. Advantage is taken of IMOGENs computational speed which allows multiple simulations to be carried out to assess the robustness of the GCM results.The timing of forest dieback is found to be sensitive to the initial pre-industrial climate, as well as uncertainties in the representation of land-atmosphere CO2 exchange. Changing from a Q 10 form for plant dark and maintanence respiration (as used in the coupled GCM runs) to a respiration proportional to maximum photosynthesis, reduces the biomass lost from Amazonia in the 21st century. Replacing the GCM control climate (which has about 25% too little rain in the annual mean over Amazonia) with an observed climatology increases the CO2 concentration at which rainfall drops to critical levels, and thereby further delays the dieback. On the other hand, calibration of the canopy photosynthesis model against Amazonian flux data tends to lead to earlier forest dieback. Further advances are required in both GCM rainfall simulation and land-surface process representation before a clearer picture will emerge on the timing of possible Amazonian forest dieback. However, it seems likely that these advances will overall lead to projections of later forest dieback as GCM control climates become more realistic.  相似文献   

13.
The WAMME regional model intercomparison study   总被引:5,自引:3,他引:2  
Results from five regional climate models (RCMs) participating in the West African Monsoon Modeling and Evaluation (WAMME) initiative are analyzed. The RCMs were driven by boundary conditions from National Center for Environmental Prediction reanalysis II data sets and observed sea-surface temperatures (SST) over four May–October seasons, (2000 and 2003–2005). In addition, the simulations were repeated with two of the RCMs, except that lateral boundary conditions were derived from a continuous global climate model (GCM) simulation forced with observed SST data. RCM and GCM simulations of precipitation, surface air temperature and circulation are compared to each other and to observational evidence. Results demonstrate a range of RCM skill in representing the mean summer climate and the timing of monsoon onset. Four of the five models generate positive precipitation biases and all simulate negative surface air temperature biases over broad areas. RCM spatial patterns of June–September mean precipitation over the Sahel achieve spatial correlations with observational analyses of about 0.90, but within two areas south of 10°N the correlations average only about 0.44. The mean spatial correlation coefficient between RCM and observed surface air temperature over West Africa is 0.88. RCMs show a range of skill in simulating seasonal mean zonal wind and meridional moisture advection and two RCMs overestimate moisture convergence over West Africa. The 0.5° computing grid enables three RCMs to detect local minima related to high topography in seasonal mean meridional moisture advection. Sensitivity to lateral boundary conditions differs between the two RCMs for which this was assessed. The benefits of dynamic downscaling the GCM seasonal climate prediction are analyzed and discussed.  相似文献   

14.
Summary The problem of global climate change forced by anthropogenic emissions of greenhouse gases (GHG) and sulfur components (SU) has to be addressed by different methods, including the consideration of concurrent forcing mechanisms and the analysis of observations. This is due to the shortcoming and uncertainties of all methods, even in case of the most sophisticated ones. In respect to the global mean surface air temperature, we compare the results from multiple observational statistical models such as multiple regression (MRM) and neural networks (NNM) with those of energy balance (EBM) and general circulation models (GCM) where, in the latter case, we refer to the recent IPCC Report. Our statistical assessments, based on the 1866–1994 period, lead to a GHG signal of 0.8–1.3 K and a combined GHG-SU signal of 0.5–0.8 K detectable in observations. This is close to GCM simulations and clearly larger than the volcanic, solar and ENSO (El Niño/southern oscillation) signals also considered.With 2 Figures  相似文献   

15.
Despite an increasing understanding of potential climate change impacts in Europe, the associated uncertainties remain a key challenge. In many impact studies, the assessment of uncertainties is underemphasised, or is not performed quantitatively. A key source of uncertainty is the variability of climate change projections across different regional climate models (RCMs) forced by different global circulation models (GCMs). This study builds upon an indicator-based NUTS-2 level assessment that quantified potential changes for three climate-related hazards: heat stress, river flood risk, and forest fire risk, based on five GCM/RCM combinations, and non-climatic factors. First, a sensitivity analysis is performed to determine the fractional contribution of each single input factor to the spatial variance of the hazard indicators, followed by an evaluation of uncertainties in terms of spread in hazard indicator values due to inter-model climate variability, with respect to (changes in) impacts for the period 2041–70. The results show that different GCM/RCM combinations lead to substantially varying impact indicators across all three hazards. Furthermore, a strong influence of inter-model variability on the spatial patterns of uncertainties is revealed. For instance, for river flood risk, uncertainties appear to be particularly high in the Mediterranean, whereas model agreement is higher for central Europe. The findings allow for a hazard-specific identification of areas with low vs. high model agreement (and thus confidence of projected impacts) within Europe, which is of key importance for decision makers when prioritising adaptation options.  相似文献   

16.
The growing interest in and emphasis on high spatial resolution estimates of future climate has demonstrated the need to apply regional climate models (RCMs) to that problem. As a consequence, the need for validation of these models, an assessment of how well an RCM reproduces a known climate, has also grown. Validation is often performed by comparing RCM output to gridded climate datasets and/or station data. The primary disadvantage of using gridded climate datasets is that the spatial resolution is almost always different and generally coarser than climate model output. We have used a Bayesian statistical model derived from observational data to validate RCM output. We used surface air temperature (SAT) data from 109 observational stations in California, all with records of approximately 50 years in length, and created a statistical model based on this data. The statistical model takes into account the elevation of the station, distance from coastline, and the NOAA climate region in which the station resides. Analysis indicates that the statistical model provides reliable estimates of the mean monthly SAT at any given station. In our method, the uncertainty in the estimates produced by the statistical model are directly determined by obtaining probability density functions for predicted SATs. This statistical model is then used to estimate average SATs corresponding to each of the climate model grid cells. These estimates are compared to the output of the RCM to assess how well the RCM matches the observed climate as defined by the statistical model. Overall, the match between the RCM output and the statistical model is good, with some deficiencies likely due in part to the representation of topography in the RCM.  相似文献   

17.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   

18.
The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm (Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations, especially in correlative models such as MX, BRT, and RF. Intersections between different techniques may decrease uncertainty in future distribution projections. However, readers should not miss the fact that the uncertainties are mostly because the future GHG emission scenarios are unknowable with sufficient precision. Suggestions towards methodology and processing for improving projections are included.  相似文献   

19.
A Methodology for Quantifying Uncertainty in Climate Projections   总被引:1,自引:1,他引:0  
Possible climate change caused by an increase ingreenhouse gas concentrations, despite having been asubject of intensive study in recent years, is stillvery uncertain. Uncertainties in projections ofdifferent climate variables are usually described onlyby the ranges of possible values. For assessing thepossible impact of climate change, it would be moreuseful to have probability distributions for thesevariables. Obtaining such distributions is usuallyvery computationally expensive and requires knowledgeof probability distributions for characteristics ofthe climate system that affect climate projections. A fewstudies of this kind have been carried out with energybalance/upwelling diffusion models. Here wedemonstrate a methodology for performing a similarstudy with a 2 dimensional (zonally averaged) climatemodel that reproduces the behavior of coupledatmosphere/ocean general circulation models morerealistically than energy balance models. Thismethodology involves application of the DeterministicEquivalent Modeling Method to derive functionalapproximations of the model's probabilistic response.Monte Carlo analysis is then performed on theapproximations. An application of the methodology isdemonstrated by deriving the uncertainty in surfaceair temperature change and sea level rise due tothermal expansion of the ocean that result fromuncertainties in climate sensitivity and the rate ofheat uptake by the deep ocean for a prescribedincrease in atmospheric CO2 concentration. Wealso demonstrate propagation of correlateduncertainties through different models, by presentingresults that include uncertainty in projected carbonemissions.  相似文献   

20.
Most of the discrepancies in the climate sensitivity of general circulation models (GCMs) are believed to be due to differences in cloud radiative feedback. Analysis of cloud response to climate change in different ‘regimes’ may offer a more detailed understanding of how the cloud response differs between GCMs. In which case, evaluation of simulated cloud regimes against observations in terms of both their cloud properties and frequency of occurrence will assist in assessing confidence in the cloud response to climate change in a particular GCM. In this study, we use a clustering technique on International Satellite Cloud Climatology Project (ISCCP) data and on ISCCP-like diagnostics from two versions of the Hadley Centre GCM to identify cloud regimes over four different geographical regions. The two versions of the model are evaluated against observational data and their cloud response to climate change compared within the cloud regime framework. It is found that cloud clusters produced by the more recent GCM, HadSM4, compare more favourably with observations than HadSM3. In response to climate change, although the net cloud response over particular regions is often different in the two models, in several instances the same basic processes may be seen to be operating. Overall, both changes in the frequency of occurrence of cloud regimes and changes in the properties (optical depth and cloud top height) of the cloud regimes contribute to the cloud response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号