首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical investigation has been made of propagating electrostatic waves in a four-component adiabatic dusty plasma, whose constituents are adiabatic electrons, adiabatic ions, adiabatic positively and as well as negatively charged warm dust. The basic features of the solitary structures in such a four-component adiabatic dusty plasma are studied by the reductive perturbation method. It is found that the presence of the positive dust component does not only significantly modify the basic properties of the solitary waves, but also causes the existence of the positive solitary potential structures, which is an interesting feature shown in an adiabatic dusty plasma with the dust of opposite polarity. It is also observed that the basic properties (polarity, speed, amplitude and width) of the DA SWs are significantly modified by the effects of adiabaticity (γ>1) of electrons, ions, negatively as well as positively charged warm dust. The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty space plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

2.
We use optical and infrared imaging data of a complete hard X-ray selected sample of AGN to investigate the host galaxies of nearby Seyfert 1 nuclei. We disentangle the emission due to the unresolved point source and the resolved host galaxy by means of luminosity profile fitting. The stellar colours in the nucleus are redder inB — V andV — K than in normal spiral bulges or current stellar evolutionary models, probably due to dust obscuration.J — H colour is quite normal butH — K usually very red, probably indicating a large contribution from reradiating hot dust to the IR colours. No significant difference in IR colours oi the stellar component is found with respect to a comparison sample of Liners and starbursts, except that the reradiating dust in Seyferts tends to be hotter and lie closer to the nucleus.B — V colour gets slightly bluer towards the nucleus, whereasV — K andJ — K have red gradients.B — V andJ — K gradients are not correlated and are likely to be caused by different mechanisms. There is a clear correlation between the AGN and host luminosity. Finally, we present optical colour ratio maps of two Seyfert nuclei, NGC 3227 and NGC 7469. The blue, ringlike or elongated structure in the maps and its correspondence with molecular CO geometry is interpreted as evidence for circumnuclear star formation in these AGN.  相似文献   

3.
Our interest is to study the sheath formation in an inhomogeneous plasma coexisting with an interaction of weak ionization. Pseudopotential analysis has been employed to derive the coherent structures of sheath in plasma. It has shown that the ionization affects the growth of sheath in plasma and nature depends fully on plasma constituents as well. After getting a robust sheath, dynamical behaviors of a levitated dust grain into the robust sheath has been studied which, in fact, leads to find the variation of dust potential, dust sizes along with the net force generated on grains. Results are obtained numerical for some typical plasma parameters. It has demonstrated that the plasma constituent effects the clustering of dust grains in different region within the sheath as a result of which dust agglomeration forms nebulons: patches of dust cloud-like structures with changing fleece.  相似文献   

4.
The primary negative ion sources in comets are shown to be: for the inner coma—both polar photodissociation of HCN, electron attachment of OH and collisions with alkalis; in the vicinity of the nucleus—plasma, excavated during interplanetary dust impacts on the nucleus; for both the contaminated solar wind region and sporadic discharges in the non-homogeneous inner coma plasma—dissociative electron attachment and charge inversion during keV positive ion scattering by cometary dust are also significant sources. Negative ion abundance for Halley's Comet has been estimated to be from 10–6 to 10–10 of electron densities. However, this ratio may be more due to the formation of clusters A(H2O)n. Some possible cometary plasma effects, caused by negative ions, have also been discussed.  相似文献   

5.
Summary Ultracompact (UC)HII regions are manifestations of newly formed massive stars that are still embedded in their natal molecular cloud. They are among the brightest and most luminous single objects in the Galaxy at far infrared and radio wavelengths. Recent high spatial resolution studies, particularly at radio wavelengths, have greatly contributed to our understanding of these dynamic objects and the impact they have on their environment. A summary is given of our current understanding of the physical properties, morphologies, dynamics, number and distribution in the Galaxy, and molecular environments of UCHII regions. Recent models of the circumnebular dust imply that the graphite/silicate abundance ratio is about half that of dust in the diffuse interstellar medium. The dust cocoons are large, cool, and optically thick shortward of a few microns. There are apparently between 1700 and 3000 UCHII regions in the Galaxy. This represents 10–20% of the total O star population. There are too many UCHII regions (just counting those studied with the VLA) to be consistent with the short dynamical lifetimes of this very compact stage of evolution. Both the morphologies and the large number can be understood if UC HII regions are bow shocks. Models of stellar wind supported bow shocks are discussed and consequences for the dynamics and morphologies of the ionized and molecular gas are explored.  相似文献   

6.
Multidimensional, anisotropic cosmological models with Ricci-flat subspaces are investigated within the framework of low-energy string theory. The main properties of these models, their behavior at early and late stages of evolution, in particular, are determined on the basis of a qualitative theory of dynamical systems. The conditions for dynamical compactification of extra dimensions are found. A concrete model with a Kalb — Ramond field as the source is considered as an illustration.Translated from Astrofizika, Vol. 39, No. 2, pp. 287–311, April–June, 1996.  相似文献   

7.
IUE ultraviolet spectral recording for a low excitating planetary nebula NGC 6369 is obtained. The very strong doublet 2800 Mgii in emission as well as not less strong absorption line 2852 Mgi are discovered in the spectrum of this nebula. It is shown that the resonance line 2852 Mgi may originate only in a neutral envelope, around the nebula, consisting of neutral hydrogen, neutral magnesium, and dust particles (Hi+Mgi). The importance of this absorption line as a powerful indicator of the discovery of neutral envelopes around the planetary nebulae is outlined.The possibility of the existence of one more envelope—transition zone—immediately contacting with the bright that is ionized part of nebula (Hii+Mgii) is also shown. The transition zone consists of neutral hydrogen, ionized magnesium, and dust particles (Hi+Mgii), main parameters of this zone are also obtained (Table IV).The temperature of the central star of this nebula is obtained for the first time:T *=48000 K. Continuous background in the interval 2600–3000 Å is identified with Balmer continuum with electron temperatureT e =12500 K.  相似文献   

8.
Over one thousand objects have so far been discovered orbiting beyond Neptune. These trans-Neptunian objects (TNOs) represent the primitive remnants of the planetesimal disk from which the planets formed and are perhaps analogous to the unseen dust parent-bodies in debris disks observed around other main-sequence stars. The dynamical and physical properties of these bodies provide unique and important constraints on formation and evolution models of the Solar System. While the dynamical architecture in this region (also known as the Kuiper Belt) is becoming relatively clear, the physical properties of the objects are still largely unexplored. In particular, fundamental parameters such as size, albedo, density and thermal properties are difficult to measure. Measurements of thermal emission, which peaks at far-IR wavelengths, offer the best means available to determine the physical properties. While Spitzer has provided some results, notably revealing a large albedo diversity in this population, the increased sensitivity of Herschel and its superior wavelength coverage should permit profound advances in the field. Within our accepted project we propose to perform radiometric measurements of 139 objects, including 25 known multiple systems. When combined with measurements of the dust population beyond Neptune (e.g. from the New Horizons mission to Pluto), our results will provide a benchmark for understanding the Solar debris disk, and extra-solar ones as well.  相似文献   

9.
Ionized gases containing fine (μm to sub-μm sized) charged dust grains, referred to as dusty plasmas, occur in diverse cosmic and laboratory environments. Dust occurs in many space and astrophysical environments, including planetary rings, comets, the Earth's ionosphere, and interstellar molecular clouds. Dust also occurs in laboratory plasmas, including processing plasmas, and crystallized dusty plasmas. Charged dust can lead to various effects in a plasma. In this review, some physical processes in dusty plasmas are discussed, with an emphasis on applications to dusty plasmas in space. This includes theoretical work on several wave instabilities, the role of dust as an electron source, and Coulomb crystals of positively charged dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The fluid approach is employed to investigate theoretically the effect of strong electrostatic interaction on the dust acoustic (DA) shock waves near to the liquid-crystal phase transition in strongly coupled dusty plasma. The strong electrostatic interaction is modeled by effective electrostatic temperature which is considered as a dynamical variable. It is shown that the nonlinear evolution of dust acoustic shock waves in the present model is governed by a Burger equation, the coefficients in which are modified by strong coupling effect. Then, it is shown that how the perturbation of the effective electrostatic temperature modifies the basic properties of the DA shock waves.  相似文献   

11.
The infrared properties of dust in space, as inferred from infrared observations at low to moderate spectral resolution at wavelengths 30 m are summarized. Condensates at high temperature: featureless material and silicon carbide; moderate temperature: silicates; and low temperature — ices are briefly discussed. Strong band emission from as yet unknown species has been detected in a variety of objects. Episodes of rapid dust formation have been recorded in the infrared spectra of certain eruptive variable stars, including classical novae. Observations of this class of objects promises to provide information on grain nucleation and growth.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

12.
A rich set of new measurements has greatly expanded our understanding of the Moon–plasma interaction over the last sixteen years, and helped demonstrate the fundamentally kinetic nature of many aspects thereof. Photon and charged particle impacts act to charge the lunar surface, forming thin Debye-scale plasma sheaths above both sunlit and shadowed hemispheres. These impacts also produce photoelectrons and secondary electrons from the surface, as well as ions from the surface and exosphere, all of which in turn feed back into the plasma environment. The solar wind interacts with sub-ion-inertial-scale crustal magnetic fields to form what may be the smallest magnetospheres in the solar system. Proton gyro-motion, solar wind pickup of protons scattered from the dayside surface, and plasma expansion into vacuum each affect the dynamics and structure of different portions of the lunar plasma wake. The Moon provides us with a basic plasma physics laboratory for the study of fundamental processes, some of which we cannot easily observe elsewhere. At the same time, the Moon provides us with a test bed for the study of processes that also operate at many other solar system bodies. We have learned much about the Moon–plasma interaction, with implications for other space and planetary environments. However, many fundamental problems remain unsolved, including the details of the coupling between various parts of the plasma environment, as well as between plasma and the surface, neutral exosphere, and dust. In this paper, we describe our current understanding of the lunar plasma environment, including illustrative new results from Lunar Prospector and Kaguya, and outstanding unsolved problems.  相似文献   

13.
The properties of dust acoustic double-layers (DA-DLs) in an unmagnetized electron depleted dusty plasma consisting of inertial dust fluid and ions featuring Tsallis statistics are investigated. It is found that our plasma model can admit compressive as well as rarefactive DA-DLs depending on the value of nonextensive parameter q. As the value of q increases, the negative DA-DL shrinks and, beyond a certain critical value, develops into a positive structure allowing therefore the existence of compressive DA-DLs.  相似文献   

14.
A new concept —the Paradox of Nebula IC4997 — is the main subject of the present article. The essence of this paradox arises when the variations of the intensities of forbidden lines 4363 [Oiii] andN 1+N 2 [Oiii] take place not in unison as is predicted by the classical theory. An attempt is made to solve this paradox, suggesting the possibility both of spontaneous appearance of relativistic electrons in the nebula and the generation of so-calledtransition radiation as a result of electrodynamic interaction of these electrons with dust particles in nebula. The parameters of relativistic electrons and power of transition radiation are obtained. The problems which need further examination are also enumerated.  相似文献   

15.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

16.
The physical conditions in a stationary flow of the Petchek type, allowing reconnection between flux emerging from below the solar photosphere and a preexisting magnetic field, are discussed. It is shown that, when rising in the solar atmosphere, the reconnection region has at first a rather low temperature as compared with its environment. Above a certain critical height, however, this low temperature thermal equilibrium often ceases to be possible, and the sheet rapidly heats, seeking a new thermal equilibrium. During this dynamical process, current-driven microinstabilities may be triggered in the current sheet, giving rise to an enhanced resistivity. High energy particles might be produced by the induced electric field developed during the rapid readjustment of MHD flows that results from this change in the transport properties of the plasma.  相似文献   

17.
Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called “Dust Astronomy” which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.  相似文献   

18.
Distributions of the surface brightness and the surface color of five barred spiral galaxies expressed in the form of digital maps are presented. This is the first step to determine the composition of the components of barred spiral galaxies — bar, spiral arm, inner ring and outer ring — and to obtain an accurate picture of the dynamical model of a barred spiral galaxy. We have found that (a) the bar is redder than the spiral arm and has a color similar to that of the disk and (b) the inner ring of theSB(r) type galaxy is bluer than the bar and rather resembles the spiral arm.  相似文献   

19.
20.
The technique of photoclinometry has frequently been used to determine planetary topography without proper consideration of possible sources of error. Previous studies of error sources have been limited in extent and have overlooked the importance of factors such as atmospheric scattering and the choice of a surface photometric function. This paper adopts a thorough and more direct approach to error analysis, whereby known topography is compared with photoclinometric profiles derived from synthetic quantised reflectance scans.Instrumental and geometric sources of error are found to exert a minimal influence on profiles in practice, provided that sufficient care is taken in the selection of images and the extraction of scans from those images. Environmental factors — relating to the scattering properties of the surface and, if present, atmosphere — are far more important. It is found that a simple Lommel-Seeliger law is unlikely to be appropriate to the majority of planetary terrains, given its inability to model the effects of multiple scattering or unresolved macroscopic roughness. It is further demonstrated that a Minnaert function or combination of Lommel-Seeliger and Lambert laws may empirically compensate for the first of these phenomena but not the second; in this respect, Hapke's equation is a far superior model of surface optical properties. In the case of an atmosphere, the need to correct for scattering by aerosols or suspended dust becomes more acute as atmospheric opacity increases and as particle scattering becomes more forward-biased. To perform this correction, a model for the combined reflectance of surface and atmosphere must be used when deriving profiles.Two case studies — of a small impact crater on Triton and a dust-mantled basaltic lava flow on Mars - are presented here. Regarding the latter, the implications that errors in photoclinometric flow thickness measurements have for inferred lava rheology are examined. Conservative estimates of errors in yield strength and apparent viscosity easily exceed 100% when one of the simplest photometric models possible — a Lommel-Seeliger law — is used to derive a profile.In the light of these findings, strategies are suggested for improving the results obtained from photoclinometry in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号