首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of metamorphic reactions on thermal evolution in collisional orogens   总被引:1,自引:0,他引:1  
The effects of metamorphic reactions on the thermal structure of a collisional overthrust setting are examined via forward numerical modelling. The 2D model is used to explore feedbacks between the thermal structure and exhumation history of a collisional terrane and the metamorphic reaction progress. The results for average values of crustal and mantle heat production in a model with metapelitic crust composition predict a 25–40 °C decrease in metamorphic peak temperatures due to dehydration reactions; the maximum difference between the P–T–t paths of reacting and non‐reacting rocks is 35–45 °C. The timing of the thermal peak is delayed by 2–4 Myr, whereas pressure at peak temperature conditions is decreased by more than 0.2 GPa. The changes in temperature and pressure caused by reaction may lead to considerable differences in prograde reaction pathways; the consumption of heat during dehydration may produce greenschist facies mineral assemblages in rocks that would have otherwise attained amphibolite facies conditions in the absence of reaction enthalpy. The above effects, although significant, are produced by relatively limited metamorphic reaction which liberates only half of the water available for dehydration over the lifetime of the prograde metamorphism. The limited reaction is due to the lack of heat in a model with the average thermal structure and relatively fast erosion, a common outcome in the numerical modelling of Barrovian metamorphism. This problem is typically resolved by invoking additional heat sources, such as high radiogenic heat production, elevated mantle heating or magmatism. Several models are tested that incorporate additional radiogenic heat sources; the elevated heating rates lead to stronger reaction and correspondingly larger thermal effects of metamorphism. The drop in peak temperatures may exceed 45 °C, the maximum temperature differences between the reacting and non‐reacting P–T–t paths may reach 60 °C, and pressure at peak temperature conditions is decreased by more than 0.2 GPa. Field observations suggest that devolatilization of metacarbonate rocks can also exert controls on metamorphic temperatures. Enthalpies were calculated for the reaction progress recorded by metacarbonate rocks in Vermont, and were used in models that include a layer of mixed metapelite–metacarbonate composition. A model with the average thermal structure and erosion rate of 1 mm year?1 can provide only half of the heat required to drive decarbonation reactions in a 10 km thick mid‐crustal layer containing 50 wt% of metacarbonate rock. Models with elevated heating rates, on the other hand, facilitated intensive devolatilization of the metacarbonate‐bearing layer. The reactions resulted in considerable changes in the model P–T–t paths and ~60 °C drop in metamorphic peak temperatures. Our results suggest that metamorphic reactions can play an important role in the thermal evolution of collisional settings and are likely to noticeably affect metamorphic P–T–t paths, peak metamorphic conditions and crustal geotherms. Decarbonation reactions in metacarbonate rocks may lead to even larger effects than those observed for metapelitic rocks. Endothermic effects of prograde reactions may be especially important in collisional settings containing additional heat sources and thus may pose further challenges for the ‘missing heat’ problem of Barrovian metamorphism.  相似文献   

2.
《Gondwana Research》2014,25(2):522-545
There are differences in the style of collisional orogens between the Phanerozoic and the Precambrian, most notably the appearance of blueschists and ultrahigh pressure metamorphic (UHPM) rocks in the geological record since the late Neoproterozoic, whereas these rocks are absent from older orogens. Understanding collisional orogenesis in the context of present-day values for ambient upper-mantle temperature and radiogenic heat production provides a reference from which to extrapolate back to conditions in the Precambrian. To evaluate differences in the way Phanerozoic and Precambrian collisional orogens develop, a series of experiments was run using a 2-D petrological–thermomechanical numerical model in which the collision of spontaneously moving continental plates was simulated for values of ambient upper-mantle temperature and radiogenic heat production increasing from those appropriate to the present-day. Thus, models of modern collisional orogens involving different modes of exhumation of UHPM rocks were extrapolated back to conditions appropriate for the Precambrian. Based on these experiments an increase of the ambient upper-mantle temperature to > 80–100 K above the present-day value leads to two distinct modes of collision that are different from the modern collision regime and for which the terms truncated hot collision regime (strong mafic lower continental crust) and two-sided hot collision regime (weak felsic lower continental crust) are proposed. Some Proterozoic orogens record post-extension thickening to generate counter-clockwise metamorphic PT paths followed by slow close-to-isobaric retrograde cooling, such as occurred in the Paleoproterozoic Khondalite belt in the North China craton and the late Mesoproterozoic–early Neoproterozoic Eastern Ghats province, part of the Eastern Ghats belt of peninsular India. These orogens have similarities with the truncated hot collision regime in the numerical models, assuming subsequent shortening and thickening of the resulting hot lithosphere. Other Proterozoic orogens are characterized by clockwise looping metamorphic PT paths and extensive granite magmatism derived from diverse crustal and subcontinental lithospheric mantle sources. These orogens have similarities with the two-sided hot collision regime in the numerical models. Both regimes are associated with shallow slab breakoff that precludes the formation of UHPM rocks. The temperature of the ambient upper-mantle where this transition in geodynamic regimes occurs corresponds broadly to the Neoproterozoic Era.  相似文献   

3.
Petrological data provide a good record of the thermal structure of deeply eroded orogens, and, in principle, might be used to relate the metamorphic structure of an orogen to its deformational history. In this paper, we present two‐dimensional thermal modelling of various subduction models taking into account varying wedge geometry as well as variation of density and topography with metamorphic reactions. The models clearly show that rock type accreted in the wedge has important effects on the thermal regime of orogenic wedges. The thermal regime is dominated by radiogenic heat production. Material having high radioactive heat production, like the granodioritic upper crust, produces high temperature metamorphism (amphibolitic conditions). Material with low radioactive heat production results in low temperature metamorphism of greenschist or blueschist types depending on the thickness of the wedge. Application of this model to seemingly unrelated areas of the Central Alps (Lepontine Dome, Grisons) and Eastern Alps (Tauern Window) explains the coexistence and succession of distinct Barrovian and blueschist facies metamorphic conditions as the result of a single, continuous tectonic process in which the main difference is the composition of the incoming material in the orogenic wedge. Accretion of the European upper continental crust in the Lepontine and Tauern Domes produces Barrovian type metamorphism while accretion of oceanic sediments results in blueschist facies metamorphism in the Valaisan domain.  相似文献   

4.
关于巴罗式变质带的最新研究及其对研究秦岭杂岩的意义   总被引:1,自引:1,他引:0  
任留东  李崇  王彦斌  李淼 《岩石学报》2018,34(4):913-924
本文对苏格兰高地Grampian造山运动中产生的经典巴罗变质带进行了讨论,重点介绍了近年来关于其变质作用的特征及发生机制认识方面的重大变化。强调巴罗变质作用仅发生在整个造山运动过程中的部分时段,纪录了短暂的加热过程,时空上与区域内大规模的双峰式岩浆活动有关。经典的巴罗变质系列并非形成于地壳增厚及其热弛豫,而是代表了中地壳内大规模的接触变质作用。参考经典地区的变质特征,对发育巴罗式变质作用的秦岭杂岩进行了初步对比分析,指出其中与夕线石有关的变质P-T-t轨迹可能是等压冷却过程,而不是等温降压的顺时针演化模式。秦岭杂岩的变质作用时间仍需要进一步准确厘定。结合其它相关地质特征的分析和对比,得出如下推论:巴罗式变质带发育地区的变质作用、混合岩与花岗岩均属于同一动力系统作用的结果,花岗质岩体不是变质作用的原因;基性岩浆可能提供了巴罗式变质作用发生所需要的热能,但不是必要条件;巴罗式变质作用可以发生在正常地壳厚度情况下,不是碰撞构造的标志;伴随热异常的变形过程中产生了变质带的梯度分布(巴罗式变质带)和一些花岗岩,形成类似于底辟的冲起构造。  相似文献   

5.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   

6.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   

7.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

8.
The Western Sonobari Complex in northwestern Mexico consists of metamorphosed rocks mostly derived from Palaeozoic (?) sedimentary and Mesozoic igneous protoliths. Rocks of this complex display amphibolite facies orogenic metamorphism, pervasive foliation, migmatization, and four folding phases. These features are ascribed to a contractional tectonic event with NNW–SSE shortening direction, which caused thrusting, thickening of the crust, and sinking of the lithological units. U–Pb geochronology of migmatitic leucosome bands indicates that peak metamorphic conditions were reached between ~93 and 89 Ma. Post-tectonic Late Cretaceous peraluminous aplite-pegmatite dikes transect the metamorphic foliation. Traditional thermobarometry in the metamorphic rocks yields average pressures and temperatures of 9.0–7.1 kbar and 745–663°C, typical of intermediate P/T Barrovian metamorphism. On the basis of its age and contractional character, the thickening event originating the metamorphism may be related to collision of the Alisitos island arc against crustal blocks of Mexico. Thermobarometric data of post-tectonic intrusives including Late Cretaceous granodiorite and Eocene gabbro indicate emplacement within an overthickened crust, while P-T conditions of post-tectonic dikes point towards an almost isothermal decompression path along the amphibolite facies field. Rock units of similar age and metamorphic character are discontinuously exposed from the Islas Marias offshore the Nayarit coast to the Peninsular Ranges batholith of Baja California, and even extend north into the Sierra Nevada batholith and the Sevier hinterland. This extensive belt of Barrovian metamorphic rocks thus provides a record of middle Cretaceous shortening and crustal thickening related to arc-continent collision followed by subduction resuming.  相似文献   

9.
Mobilization and migration of the heat‐producing elements (HPE) during anatexis is a critical process in the development of orogenic systems, the evolution of continental crust and the stabilization of cratons. In many crustal rocks the accessory minerals are the dominant hosts of Th and U, and the behaviour of these minerals during partial melting controls the concentrations of these elements in draining melt and residue. We use phase equilibrium modelling to evaluate if loss of melt saturated in the essential structural constituents of the accessory minerals can explain the concentrations of Th and U in residual metasedimentary migmatites and granulites along two well‐characterized crustal transects in the Ivrea zone, Italy and at Mt Stafford, Australia. While an equilibrium model of accessory mineral breakdown and melt loss approximates the depletion of U in the residual crust along both transects, it does not explain the relative enrichment of Th. We propose that the high Th concentrations in residual crust may be explained by either inhibition of monazite dissolution by kinetic factors or near‐peak growth of new high Th grains and overgrowth rims on undissolved monazite due to migration of melt through the orogenic crust. Retention of the HPE in the middle and deep orogenic crust may allow metasedimentary granulites to overcome the enthalpy barrier of melting to achieve ultrahigh temperature conditions and may be partly responsible for the slow cooling of many granulite terranes. Lastly, although the mantle was warmer and crustal heat production was higher in the past, peak temperatures and apparent thermal gradients of high‐temperature (HT)–ultrahigh temperature (UHT) granulite terranes have not decreased significantly since the Neoarchean. However, the pressure of HP granulite facies metamorphism has increased gradually from the Archean to the Phanerozoic, which suggests that the lithosphere became stronger as secular cooling of the mantle enabled plate collisions to form thicker orogens. Thus, as the lithosphere became stronger, the proportion of HT–UHT metamorphism associated with thin lithosphere and mantle heat has decreased, whereas the proportion associated with the formation of thick crust and radiogenic heat has increased.  相似文献   

10.
This contribution emphasizes first-order structural and metamorphic characters of Precambrian accretionary orogens to understand the kinematics and thermomechanical state of the continental lithosphere in convergent settings involving massive juvenile magmatism. We define a new class of orogens, called ultra-hot orogens (UHO), in which the weakest type of lithosphere on Earth is deformed. UHO are characterized by (1) distributed shortening and orogen-scale flow combining vertical and horizontal longitudinal advection, under long-lasting convergence, (2) homogeneous thickening by combined downward movements of supracrustal units and three-dimensional mass redistribution in the viscous lower crust, and (3) steady-state, negligible topography and relief leveled by syn-shortening erosion and near-field sedimentation. The flow analysis of UHO provides clues to understanding crustal kinematics beneath high plateaus and suggests that the seismic reflectivity pattern of hot orogens is an image of the layering produced by lateral flow of the lower crust and associated syn-kinematic plutonism.In between the UHO and the modern cold orogens (CO), developed by shortening of lithosphere bearing a stiff upper mantle, two classes of orogens are defined. Hot orogens (HO, representative of Cordilleran and wide mature collisional belts) share flow pattern characteristics with UHO, but involve a less intense magmatic activity and develop high topographies driving their collapse. Mixed-hot orogens (MHO, representative of magmatic arcs and Proterozoic collisional belts) are orogens made of UHO-type juvenile crust and display CO-like structure and kinematics. This classification points to the fundamental link between the presence of a stiff lithospheric mantle and strain localization along major thrusts in convergent settings. A high Moho temperature (> 900 °C), implying thinning of the lithospheric mantle, enhances three-dimensional flow of the lithosphere in response to convergence. Overall, this classification of orogens emphasizes the space and time variability of uppermost mantle temperature in controlling plate interactions and continental growth.  相似文献   

11.
Central Gondwana was assembled by three continental collisions in relatively quick succession: late Cryogenian East Africa Orogen, early Ediacaran West Antarctica Orogen and late Ediacaran Kuunga Orogen. The Kuunga Orogen involved diachronous closure of the South Adamastor–Khomas–Mozambique Oceans and accretion of Kalahari Craton and cratonic elements in Antarctica, with a previously assembled North Gondwana. The two older orogens were still hot and deforming at the time of final assembly by the Kuunga Orogen, and were therefore reworked and re-metamorphosed. The Central Kuunga Orogen is comprised of the Lufilian Arc, Zambezi Belt, Malawi–Unango Complex and the Lurio Belt. This region was the site of earliest collision in the Kuunga Orogen at ~575 Ma, and involved collision of two buoyant, previously metamorphosed rigid basement promontories. Pivoting on the Zambezi Belt indenters led to clockwise rotation of the Kalahari Craton and oblique collision within the Damara Belt ~20–30 m.y. later. The Central Kuunga Orogen is a relatively cold collisional belt dominated by eclogite, whiteschist and Barrovian series metamorphic parageneses, and contrasts with the paired metamorphic response in the Damara Belt to the west, and low-P/high-T metamorphism in the East Kuunga Orogen. Metamorphic parageneses are preserved from each stage of the full Wilson Cycle: from initiation of continental lithosphere thinning at ~940 Ma, widespread rifting between 725 and 805 Ma, and passive margin sedimentation until ~580 Ma. Eclogite-facies subduction parageneses indicate consumption of ocean lithosphere was underway by ~630–660 Ma. Collision at ~575 Ma involved deep burial of continental crust and formation of very high-P, low T/depth metamorphic parageneses, followed by Barrovian series thermal peaks at ~545 and ~525 Ma. Isostatic compensation and stress switches associated with plate reconfigurations once Gondwana was assembled, resulted in exhumation and local extension in an intra-continental setting from ~518 Ma.  相似文献   

12.
自20世纪80年代在大陆地壳岩石中发现柯石英和金刚石等超高压变质矿物以来,大陆深俯冲和超高压变质作用就成为了固体地球科学研究的前沿和热点领域之一.经过三十余年的研究,已经在大陆地壳的俯冲深度、深俯冲岩石变质P-T-t轨迹、俯冲地壳岩石的折返机制、深俯冲岩石的原岩性质、大陆碰撞过程中的熔/流体活动与元素活动性、俯冲隧道内...  相似文献   

13.
Ordovician metasedimentary rocks are the oldest and most extensive sedimentary sequence in the Chinese Altai. They experienced two major episodes of deformation (D1 and D2) resulting in the formation of juxtaposed Barrovian‐type and migmatite domains. D1 is characterized by a penetrative sub‐horizontal fabric (S1), and D2 is marked by upright folds (F2) with NW–SE‐trending axial planes in shallow crustal levels and by sub‐vertical transposition foliations (S2) in the high‐grade cores of large‐scale F2 antiforms. In the Barrovian‐type domain, successive growth of biotite, garnet and staurolite is observed in the S1 fabric. Kyanite included in garnet and plagioclase in the migmatite domain is interpreted to have formed also in S1. In the biotite and garnet zones, the spaced S2 cleavage is marked by biotite and muscovite, and in the staurolite and kyanite zones, the penetrative S2 fabric is characterized by sillimanite, locally with late cordierite. Phase equilibria modelling indicates that the S1 fabric was associated with an increase in pressure and temperature under Barrovian‐type conditions in both domains. The S2 fabric was related to decompression, in which rocks in the biotite and garnet zones well preserve the peak assemblage, and the higher grade rocks in the staurolite and kyanite zones re‐equilibrated to different degrees under high‐temperature/low‐pressure (HT/LP) conditions. The D1 metamorphic history is attributed to the progressive burial related to Early–Middle Palaeozoic crustal thickening and the metamorphism associated with D2 is interpreted to result from exhumation by vertical extrusion. The extrusion of hot rocks was contemporaneous with the formation of gneiss domes accompanied by the intrusion of juvenile magmas at middle crustal levels during the Middle Palaeozoic. Consequently, there is a genetic link between the Barrovian‐type and migmatite domains related to continuous transition of the Barrovian‐type fabric into the HT/LP one during development of domal structures in the southern Altai orogenic belt. This study has a broad impact on the understanding of the thermo‐mechanical behaviour of accretionary orogenic systems worldwide. The lower crustal flow and doming of hot crust, so far reported only in continental collisional settings, seems to be also an integral mechanism responsible for both horizontal and vertical redistribution of accreted material prior to continental collision.  相似文献   

14.
Coupled thermal‐mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (≥ 450 km) at 1 cm yr?1, and a slope‐dependent erosion rate. The model crust is layered with respect to thermal and rheological properties — the upper crust (0–20 km) follows a wet quartzite flow law, with heat production of 2.0 μW m?3, and the lower crust (20–35 km) follows a modified dry diabase flow law, with heat production of 0.75 μW m?3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T≥600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro‐side of the system, and is driven by a depth‐dependent pressure gradient that is facilitated by the development of a temperature‐dependent low viscosity horizon in the mid‐crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post‐convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust‐related exhumation on the flanks. Velocities in the pro‐side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro‐side flank of the plateau leads to ‘ductile extrusion’ of the channel flow zone. The exhumed channel displays apparent normal‐sense offset at its upper boundary, reverse‐sense offset at its lower boundary, and an ‘inverted’ metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P–T–t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen.  相似文献   

15.
戴立群  赵子福 《地球科学》2019,44(12):4128-4134
在大陆碰撞造山带中寻找消失的古洋壳再循环及其壳幔相互作用的证据,对理解从洋壳俯冲到陆壳俯冲化学地球动力学过程的转变,以及板块构造理论的发展具有重要意义.通过对桐柏-红安造山带晚古生代和晚中生代镁铁质岩浆岩的岩石地球化学特征进行总结,可以识别出俯冲古洋壳再循环的岩石学和地球化学记录.晚古生代岛弧型镁铁质岩石具有弧型微量元素特征和相对亏损的放射成因同位素组成,记录了俯冲古洋壳在弧下深度(80~160 km)的流体交代作用;而晚中生代洋岛型镁铁质岩石OIB型微量元素特征和亏损-弱富集的放射成因同位素组成,记录了俯冲古洋壳在弧后深度(>200 km)的熔体交代作用.这一定性的解释也进一步得到了定量计算的证实,其结果表明镁铁质岩浆岩中的不相容元素的含量以及放射性成因同位素的富集程度,主要受控于地幔源区中所加入的地壳组分的性质和比例.因此,碰撞造山带中的岛弧型和洋岛型镁铁质岩浆岩,分别记录了弧下和弧后深度的俯冲古洋壳物质再循环.   相似文献   

16.
造山带热结构对大陆碰撞带的形态大小、构造式样、岩浆活动和变质作用具有重要控制作用。然而,热结构对碰撞成矿作用的控制还不清楚。本文概述比利牛斯、阿尔卑斯、加里东、扎格罗斯、青藏高原和华力西等全球主要碰撞带的热结构与成矿系统发育特征,对比各个造山带内不同矿床类型成矿温度变化,探讨热结构对碰撞成矿的控制作用。研究表明,碰撞带主要发育盆地流体有关的密西西比河谷型铅锌矿床、变质流体有关的造山型金矿床和岩浆热液有关矿床(斑岩铜矿床、云英岩型钨锡矿床和岩浆热液有关的铌钽锂铍矿床等)。其中,前两者在大多数碰撞带内均有发育,代表了大陆碰撞成矿作用的基本类型。这些矿床的成矿温度在热碰撞带比较高而在冷碰撞带则偏低。岩浆热液有关矿床一般只出现在比较热的碰撞带内,这些热碰撞带的温度压力条件有很大区域在湿固相线以内,热扰动能够造就地壳发生部分熔融形成含矿岩浆。  相似文献   

17.
地壳放射性生热效应对大陆俯冲过程影响的数值模拟研究   总被引:1,自引:0,他引:1  
岩体中的放射性生热是地幔对流和地壳变质作用的关键热源之一,但地壳放射性生热率是如何影响大陆俯冲-碰撞的动力学过程,尤其是大陆碰撞区域的热结构演化,尚未获得共识。本文使用热-力学数值模拟方法对上、下地壳放射性生热率进行系统的模拟实验,以研究其对大陆俯冲动力学演化过程的影响。模型实验表明,由于大陆上地壳富集U、Th和K等主要放射性生热元素,且放射性生热率的变化区间较大(1.0~3.0μW/m~3),导致其对大陆俯冲碰撞动力学演化过程的影响较为显著,主要包括进入俯冲通道内的上地壳体积大小、碰撞区域内地壳熔融范围、俯冲下地壳物质折返的规模和两大陆的耦合程度等四个方面。而大陆下地壳则以中-基性岩为主,相对亏损U、Th、K等主要放射性生热元素,且放射性生热率的变化区域较小(0.2~0.8μW/m~3),致使其对大陆俯冲演化过程的影响相对有限,主要通过控制俯冲下地壳以及大陆板片的粘滞度和流变强度的大小,进而制约大陆俯冲过程下地壳物质折返的规模以及板片倾角的大小。  相似文献   

18.
巴罗型中压变质带与巴肯型低压高温变质带的成因与大陆板块边缘的碰撞造山及陆内造山作用之间有着紧密的联系。根据变质带的空间时间配置关系、压力类型、变质作用pTt轨迹、伴生的岩浆岩等等,可以区分出3种类型的大陆造山模式:弧-陆拼贴型、陆-陆碰撞型(可进一步分为中高压型碰撞造山带和双变质型山带型(paired metamorphic mountain belt)陆-陆碰撞带)、陆内造山地壳加厚-伸展型。巴罗型中压变质带普遍出现于地壳加厚-热弛豫的构造环境,但巴肯型低压变质带形成的构造背景及物理化学条件在不同的造山带有不同的表现形式,其热源至少有:壳内岩浆侵入或岩浆板底垫托、沉降盆地放射性同位素的衰变热、构造热穹隆、变质核杂岩、地下热流体传热等。大陆边缘造山带中巴罗型变质带的倒转以及板内造山带中变质带问断等现象与造山动力学过程密切相关,记录了造山过程中的重要的地质事件,也是探讨造山历史的理想场所。由于四川丹巴地区松潘—甘孜造山带形成于很独特的3个板块双极性构造环境,表现出与世界上典型造山带诸多相似的地方,如巴罗型中压变质带、巴肯型低压高温带同时在一系列变质穹隆中发育,但又有其特殊性和复杂性,如通常只发育在大陆边缘的倒转的巴罗带和陆内造山过程中的变质相间断同时出现,显然这与本?  相似文献   

19.
On Continent-Continent Point-Collision and Ultrahigh-Pressure Metamorphism   总被引:4,自引:0,他引:4  
Up to now it is known that almost all ultrahigh-pressure (UHP) metamorphism of non-impact origin occurred in continent-continent collisional orogenic belt, as has been evidenced by many outcrops in the eastern hemisphere. UHP metamorphic rocks are represented by coesite- and diamond-bearing eclogites and eclogite facies metamorphic rocks formed at 650-800℃ and 2.6-3.5 GPa, and most of the protoliths of UHP rocks are volcanic-sedimentary sequences of continental crust. From these it may be deduced that deep subduction of continental crust may have occurred. However, UHP rocks are exposed on the surface or occur near the surface now, which implies that they have been exhumed from great depths. The mechanism of deep subduction of continental crust and subsequent exhumation has been a hot topic of the research on continental dynamics, but there are divergent views. The focus of the dispute is how deep continental crust is subducted so that UHP rocks can be formed and what mechanism causes it to be subducte  相似文献   

20.
分布在青藏高原北缘的阿尔金-祁连-柴北缘早古生代造山系被认为是原特提斯构造域最北部的构造拼合体。与其北侧具有长期增生历史的中亚造山系相比,特提斯造山拼合体被认为是各种来自冈瓦纳大陆北部大陆块体相互碰撞的产物。然而,与典型的阿尔卑斯和喜马拉雅碰撞造山带相比,阿尔金-祁连-柴北缘早古生代造山系包括有大量蛇绿岩、弧岩浆杂岩、俯冲-增生杂岩等,因此一些学者认为青藏高原北部的早古生代造山系为沿塔里木和华北克拉通边界向南逐渐增生的增生型造山带。但是,增生造山模式又很难解释南阿尔金-柴北缘地区普遍存在的与大陆俯冲有关的UHP变质岩、广泛分布的巴罗式变质作用和相关的岩浆作用,以及与碰撞造山有关的变形构造等。在本文中,通过对已有研究资料的综合总结,结合一些新的研究资料,我们提出在青藏高原东北缘的阿尔金-祁连-柴北缘造山系中,早古生代时期存在两种不同类型的造山作用,即增生和碰撞造山作用,其主要标志是北祁连-北阿尔金的HP/LT变质带、蛇绿混杂岩及与洋壳俯冲有关的构造岩浆作用,以及分布在柴北缘-南阿尔金与大陆俯冲和陆陆碰撞有关的UHP变质带、区域巴罗式变质作用、深熔作用、相关的岩浆活动及伸展垮塌作用等,并建立了一个反映原特提斯洋俯冲、增生、闭合及碰撞造山作用的构造模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号