首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
 Distinct periods of warmth have been identified in instrumental records for New Zealand and the surrounding southwest Pacific over the past 120 years. Whether this warming is due to natural climate variability or the effects of increasing greenhouse gases is difficult to determine given the limited length of instrumental record. Longer records derived from tree rings can help reduce uncertainties in detection of possible causes of climatic change, although relatively few such records have been developed for the Southern Hemisphere. In this work, we describe five temperature-sensitive tree-ring width chronologies for New Zealand which place the recent warming trend into a long-term (pre-anthropogenic) context. Included are three pink pine (Halocarpus biformis) chronologies, two for Stewart Island and one for the North Island of New Zealand. Two silver pine (Lagarostrobus colensoi) series, one each from the North and South Islands, are updated from previous work. The length of record ranges from AD 1700 for Putara, North Island to AD 1400 for Ahaura, South Island. The pink and silver pine are different species from those used previously to reconstruct temperatures for New Zealand. All five chronologies are positively and significantly correlated with warm-season (November-April) individual station temperature records, a New Zealand-wide surface air temperature index and gridded land/marine temperatures for New Zealand and vicinity. The highest 20 and 40-year growth periods in all five tree-ring series coincide with the New Zealand temperature increase after 1950. An exception is found for the 40-year interval at Ahaura, the least temperature-sensitive of the five sites. A t-test comparison indicates that these recent growth intervals are significantly higher (0.01 to 0.0001 level) than any of those prior to the twentieth century for three of the five sites, dating as far back as AD 1500. The results suggest that the recent warming has been distinctive, although not clearly unprecedented, relative to temperature conditions inferred from tree-ring records of prior centuries. Received: 18 February 1997/Accepted: 11 September 1997  相似文献   

2.
In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.  相似文献   

3.
The various bases for making Australian and New Zealand scenarios of climate change at 2010 and 2050 AD are discussed. Atmospheric greenhouse gas increases will cause historically unprecedented warming by 2050 AD, but the likely regional rainfall changes are uncertain. By 2010 AD greenhouse gas climate change should be detectable with a warming relative to the present of 0.5–1.5 °C. At 2050 AD Australian and New Zealand temperatures will be 2–3 °C higher, the frost free season will be longer and the snowline higher. Rainfall changes will be very much determined by regional airflow and storm tracks, and the state of the Southern Oscillation. In order to obtain unproved and more detailed estimates of climate at 2010 and 2050 AD existing climate models need to be improved. For Australia and New Zealand models need to focus on the south west Pacific-Australia region.  相似文献   

4.
May–July Standardized Precipitation Index (SPI) for the land area of most of Turkey and some adjoining regions are reconstructed from tree rings for the period 1251–1998. The reconstruction was developed from principal components analysis (PCA) of four Juniperus excelsa chronologies from southwestern and south-central Turkey and is based on reliable and replicable statistical relationships between climate and tree ring growth. The SPI reconstruction shows climate variability on both interannual and interdecadal time scales. The longest period of consecutive drought years in the reconstruction (SPI threshold ≤−1) is 2 yr. These occur in 1607–1608, 1675–1676, and 1907–1908. There are five wet events (SPI threshold ≥+1) of two consecutive years each (1330–1331, 1428–1429, 1503–1504, 1629–1630, and 1913–1914). A 5-yr moving average of the reconstructed SPI shows that two sustained drought periods occurred from the mid to late 1300s and the early to mid 1900s. Both episodes are characterized by low variability.  相似文献   

5.
采用东天山6个相邻地点的云杉年轮序列求得该区域平均树木年轮年表(1665~1988年)。通过响应面函数的计算,发现树木生长对温度和降水有明显的非线性响应,表明用该年表序列重建单个温度要素存在一定片面性,利用森林干旱模式计算的树木生长期干旱数,含有温度、降水、土壤性质等诸因子,且与年轮生长明显相关。进而利用树木年轮资料重建了该地区过去300年来干旱日数,与实际旱涝情况吻合较好。  相似文献   

6.
Summary We analyse the spatial representation of five previously published multi-century to millennial length dendroclimatological reconstructions of Fennoscandian summer temperatures. The reconstructions, ranging from local to regional scale, were based on either tree-ring width (TRW) or maximum latewood density (MXD) data or on a combination of the two. TRW chronologies are shown to provide reasonably good spatial information mainly for July temperatures, but a combination of TRW and MXD yields a better spatial representation for the whole summer season (June–August). A multiple-site reconstruction does not necessarily provide better spatial representation than a single site reconstruction, depending on the criterion for selecting data and also on the strength of the climate signal in the tree-ring data. In a new approach to analyse the potential for further developing Fennoscandian temperature reconstructions, we selected from a network of TRW and MXD chronologies those having the strongest temperature information a priori, to obtain a strong common climate signal suitable for a regional-scale reconstruction. Seven separate, but not independent, reconstructions based on progressively decreasing numbers of chronologies were created. We show that it is possible to improve the spatial representation of available reconstructions back to around AD 1700, giving high correlations (>0.7) with observed summer temperatures for nearly the whole of Fennoscandia, and even higher correlations (>0.85) over much of central-northern Fennoscandia. Further sampling of older trees (e.g. dry-dead and subfossil wood) would be needed to achieve the same high correlations prior to AD 1700. Our analysis suggests that it should be possible to select a few key sites for improving the reconstructions before AD 1700. Since tree-ring data from northern Fennoscandia are used in all available hemispheric-scale temperature reconstructions for the last millennium, there is also a potential for slightly improving the quality of the hemispheric-scale reconstructions, by including an improved reconstruction for Fennoscandia. However, adding new chronologies from previously unsampled regions would potentially improve hemispheric-scale temperature reconstructions more substantially. Authors’ addresses: Isabelle Gouirand, Anders Moberg, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden; Hans W. Linderholm, Regional Climate Group, Department of Earth Sciences, G?teborg University, SE-405 30 G?teborg, Sweden; Barbara Wohlfarth, Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.  相似文献   

7.
利用阿克苏气象站2-3月的平均气温与阿克苏河流域树轮标准化序列,可较好地重建该区域近378年2-3月的平均气温。重建时段具有明显的树木生理学意义,经过多方面验证,重建结果是可信的。对历史时期阿克苏河流域的平均气温进行了分析,发现阿克苏河流域过去378年的2-3月平均气温具有3.6,42和50.4年的准周期变化,平均气温重建序列在1719年和1827年前后发生突变;过去378年的2-3月平均气温大体经历了9低9高的变化阶段,其中1911-1922年是最冷的阶段,比平均值偏低1℃以上,而1640-1651年是最暖的阶段,比平均值偏高1℃以上。20世纪初-10年代中期气温持续下降,1915-1921年间平均气温维持在近百年来最低水平,其中平均最小值出现在1916年。20世纪20年代初-30年代末气温缓慢上升,40年代初—70年代初气温缓慢回落,70年代中后期到现在温度持续上升。  相似文献   

8.
Earlywood width chronologies from Douglas-fir tree rings were used to reconstruct winter (November–March) precipitation for more than 600 years over Durango, Mexico. The tree-ring data were obtained from two sites of long-lived Douglas-fir in northern and southern Durango and the seasonal climatic precipitation data were regionally averaged from five weather stations well distributed across the state. The averaged earlywood chronology accounted for 56% of the variance in instrumental November–March precipitation 1942–1983. We validated the reconstruction against independent precipitation records. The worst winter drought of the 20th century in Durango occurred 1950–1965. However, the reconstruction indicates droughts more severe than any witnessed in the 20th century, e.g., the 1850s–1860s, and the megadrought in the mid- to late-16th century. Reconstructed winter precipitation 1540–1579 shows 33 of 40 years were dry. Persistent drought may be linked to extended La Niña episodes. The Tropical Rainfall Index (TRI) correlates well with instrumental and reconstructed winter precipitation (r = 0.49 and 0.55, respectively), reflecting the strong ENSO modulation of cool season climate over northern Mexico. The ENSO teleconnection varies through time, with TRI-reconstructed precipitation correlations ranging from 0.78 to 0.27 in five periods 1895–1993. The 1942–1983 winter observed and reconstructed Durango data correlate well with the corresponding seasonalization of the All-Mexico Rainfall Index (AMRI; r=0.68, P<0.0001 and r=0.70, P<0.001, respectively), indicating that both the observed and the reconstructed precipitation often reflect broad-scale precipitation anomalies across Mexico. New long Douglas-fir and baldcypress tree-ring chronologies are now available for central and southern Mexico near major population centers, allowing the exploration of relationships between drought, food scarcity, and social and political upheaval in Mexican history.  相似文献   

9.
Ensemble empirical mode decomposition for tree-ring climate reconstructions   总被引:1,自引:1,他引:0  
A novel data adaptive method named ensemble empirical mode decomposition (EEMD) was used to reconstruct past temperature and precipitation variability in two 2,328- and 1,837-year tree-ring chronologies from the Dulan region, northeastern Qinghai–Tibetan Plateau. Our results show that EEMD can be used to extract low-frequency signals from the Dulan tree-ring data. The extracted low-frequency temperature trends in the two chronologies correlate significantly with Northern Hemisphere temperatures over the past two millennia. In addition, the newly reconstructed precipitation data have a higher standard deviation than that of data reconstructed with the conventional ordinary least squares and variance matching methods and yield the best amplitude match to the instrumental data. This study shows that EEMD is a powerful tool for extracting the full spectrum of climate information in tree-ring chronologies.  相似文献   

10.
 A tree-ring chronology network recently developed from the subantarctic forests provides an opportunity to study long-term climatic variability at higher latitudes in the Southern Hemisphere. Fifty long (1911–1985), homogeneous records of monthly mean sea-level pressure (MSLP) from the southern latitudes (15–65 °S) were intercorrelated on a seasonal basis to establish the most consistent, long-term Trans-Polar teleconnections during this century. Variations in summer MSLP between the South America-Antarctic Peninsula and the New Zealand sectors of the Southern Ocean are significantly correlated in a negative sense (r=−0.53, P<0.001). Climatically sensitive chronologies from Tierra del Fuego (54–55°) and New Zealand (39–47°) were used to develop verifiable reconstructions of summer (November to February) MSLP for both sectors of the Southern Ocean. These reconstructions, which explain between 37 and 43% of the instrumentally recorded pressure variance, indicate that inverse trends in MSLP from diametrically opposite sides of Antarctica have prevailed during the past two centuries. However, the strength of this relationship varies over time. Differences in normalized MSLP between the New Zealand and the South America-Antarctic Peninsula sectors were used to develop a Summer Trans-Polar Index (STPI), which represents an index of sea-level pressure wavenumber one in the Southern Hemisphere higher latitudes. Tree-ring based reconstructions of STPI show significant differences in large-scale atmospheric circulation between the nineteenth and the twentieth centuries. Predominantly-negative STPI values during the nineteenth century are consistent with more cyclonic activity and lower summer temperatures in the New Zealand sector during the 1800s. In contrast, cyclonic activity appears to have been stronger in the mid-twentieth than previously for the South American sector of the Southern Ocean. Recent variations in MSLP in both regions are seen as part of the long-term dynamics of the atmosphere connecting opposite sides of Antarctica. A detailed analysis of the MSLP and STPI reconstructions in the time and frequency domains indicates that much of the interannual variability is principally confined to frequency bands with a period around 3.3–3.6 y. Cross spectral analysis between the STPI reconstruction and the Southern Oscillation Index suggests that teleconnections between the tropical ocean and extra-tropical MSLP variations may be influencing climate fluctuations at southern latitudes. Received: 18 December 1996/Accepted: 10 January 1997  相似文献   

11.
Summary The similarities in time series recorded at sites which are distant from each other are called teleconnections. In this paper, the loss of such correlations with inter-site distance was investigated for both climatic and dendrochronological data sets, with 70 tree-ring chronologies. A dense network of weather stations was studied in the southeastern French Alps, covering complex climatic gradients over three departments. 78 sites with precipitation data (with a total of 48 756 monthly values), and 48 stations that recorded temperature (with 20 722 monthly mean values) were analysed. In the same area, four coniferous species (mountain pine and stone pine, European larch and Norway spruce) provided 37 ring-width chronologies for high elevation sites near the timberline. Both silver fir and Norway spruce provided a second tree-ring chronology network for 33 different sites at lower elevations. The teleconnections between precipitation series were found to be higher than those observed for temperature over short distances, but the maximum threshold distance was lower (193 km) compared to a positive correlation distance that exceeds 500 km for temperature. The maximum temperatures had stronger teleconnections than minimum values (522 km versus 476 km), since the latter are linked more with other site factors, such as slope, exposure and local topography. As expected, the tree-ring chronologies showed weaker teleconnections than the climatic series, with a threshold distance of 374 km obtained for all high elevation forests. The coniferous species with high intra-specific teleconnections over large distances were, in decreasing importance, Pinus uncinata (> 500 km), Picea abies (477 km), Pinus cembra (over 254 km) and Larix decidua (over 189 km only). The two former species showed the highest intra-specific correlations (with mean correlation R=0.625 and 0.666). The dendrochronological teleconnections were found to have a extent lesser for trees species that depend on rainfall (such as larch, and stone pine). They are enhanced, however, for temperature sensitive species such as spruce and mountain pine (a drought resistant tree). Therefore, these two latter conifers appear to be especially suitable for climatic reconstruction over large distances in mountainous areas. However, teleconnections within silver fir (Abies alba) and spruce chronologies were sharply reduced (over 131 km and 135 km) in lower elevation forests, underlining the interest of timberline forests for dendroclimatology. A better knowledge of the spatial correlations in climatic series and ring-width data may enable the optimisation of weather station networks. It may also permit a better choice of weather stations used for dendroclimatology, either for tree-ring and climate relationship calibration or for climate reconstructions. In dendrochronology, wood dating also requires the knowledge of to what extent remote ring-width chronologies can be used. Received September 11, 2000 Revised March 26, 2001  相似文献   

12.
We developed four Georgei fir (Abies georgei var. smithii) tree-ring width chronologies at the timberline in the Sygera Mts. in southeast Tibet, China. All individual standard chronologies and a regional well-replicated ring-width composite chronology (RC) show significantly positive correlations with mean summer (June-August) temperature. Herein mean summer temperature was reconstructed for southeast Tibet back to A.D. 1765 based on RC. This reconstruction successfully captures recent warming observed in the instrumental record since 1961 with the last decade being the warmest period in the past 242 years. It agrees in general with other temperature reconstructions of the Tibetan Plateau and extratropical northern hemisphere. This study allows seeing recent warming on a longer time scale in southeast Tibet.  相似文献   

13.
Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001.Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671-1692,1716-1794 and 1825-1866 and three dry periods during 1693-1715,1795-1824 and 1867-1969.Two wet periods,during 1716-1794 and 1825-1866,correspond to the times of the second and the third glacial terminal moraine formation,which is infront of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.  相似文献   

14.
Evidence is presented that suggests that annual and seasonal temperatures are in phase throughout the New Zealand region for climatic variation. Annual and seasonal temperature curves dating back to 1853 based on the longest instrumental records show a warming of over 1 °C between the early 1860's and the present day, with a 0.5 °C discontinuity since the mid 1940's. Although the warming is regional, the magnitude and timing of the fluctuations vary because of the country's high relief, and wide latitude range. These factors give differing exposure to the atmosphere and oceanic circulations, the resultant interaction of which allows the country to be divided into six temperature response areas which are homogeneous for fluctuations. The information of the last fifty years in these areas is compared. The story from the longer record is supported by phenomena documented from historical sources such as glacial variations, iceberg sightings, and severe snowstorm occurrences. The length and intensity of the growing season is examined in two climatically different areas of New Zealand to ascertain the agricultural significance of the described climate record.  相似文献   

15.
A new set of tree-ring records from the Andes of northern Patagonia, Argentina (41° S) was used to evaluate recent (i.e., last 250 years) regional trends in tree growth at upper treeline. Fifteen tree-ring chronologies from 1200 to 1750 m elevation were developed for Nothofagus pumilio, the dominant subalpine species. Samples were collected along three elevational transects located along the steep west-to-east precipitation gradient from the main Cordillera (mean annual precipitation >4000 mm) to an eastern outlier of the Andes (mean annual precipitation >2000 mm). Ring-width variation in higher elevation tree-ring records from the main Cordillera is mainly related to changes in temperature and precipitation during spring and summer. However, the response to climatic variation is also influenced by local site factors of elevation and exposure. Based on the relationships between Nothofagus growth and climate, we reconstructed changes in snow cover duration in late spring and variations in mean annual temperature since A.D. 1750. Abrupt interannual changes in the mean annual temperature reconstruction are associated with strong to very strong El Niño-Southern Oscillation events. At upper treeline, tree growth since 1977 has been anomalously high. A sharp rise in global average tropospheric temperatures has been recorded since the mid-1970s in response to an enhanced tropical hydrologic cycle due to an increase in temperature of the tropical Pacific. Temperatures in northern Patagonia have been anomalously high throughout the 1980s, which is consistent with positive temperature anomalies in the tropical Pacific and along the western coast of the Americas at c.a. 40° S latitude. Our 250-year temperature reconstruction indicates that although the persistently high temperatures of the 1980s are uncommon during this period, they are not unprecedented. Tropical climatic episodes similar to that observed during the 1980s may have occurred in the recent past under pre-industrial carbon dioxide levels.  相似文献   

16.
We developed ring-width chronologies of Cedrus deodara [(Roxb.) G. Don] and Pinus gerardiana (Wall. Ex. Lamb) from a homogeneous moisture stressed area in Kinnaur, Himachal Pradesh. Running correlation using a 50-year window with overlap of 25 years showed strong correlations between these species chronologies during the entire common period (ad 1310–2005). Response function analysis indicated that except for January–February, precipitation has a direct relationship with growth of these species. We therefore combined both the species chronologies to develop a statistically calibrated reconstruction of March–July precipitation that spans from ad 1310–2004, and explains 46% of the variance contained in the instrumental data from the calibration period 1951–1994. In the past 694 years of the reconstruction, the wettest period was in the twentieth century (1963–1992) and the driest in the eighteenth century (1773–1802). The relationships observed between reconstructed precipitation and Indian summer monsoon on interdecadal scale, SOI, PDO and NAO indicate the potential utility of such long-term reconstructions in understanding the large-scale climate variability. Multi-taper method (MTM) spectral analysis indicated significant (p < 0.05) spectral peaks at 2–4, 6, 8, 10, 30, 33, 37 and 40–42 years in the reconstructed precipitation data.  相似文献   

17.
利用阿尔泰山中部地区3个采样点的树轮宽度资料,建立年表,对比3个树轮宽度标准化年表(STD)相关特征参数及年表与气候的响应,结果表明:大东沟(DDG)年表和二道房子(EDF)年表的平均敏感度和信噪比等参数均较大,表明2个年表含有较丰富的气候信息。2个年表的显著性水平达到0.01的自相关大多在4阶以内,表明气候对阿尔泰山中部树轮宽度生长的影响主要表现在当年及其后的3 a,其"滞后效应"较明显。位于阿尔泰山中部森林中下部林缘的大东沟树轮宽度年表(DDG)与上年11月-当年4月的降水量有显著的正相关(r=0.503,p〈0.001);而位于阿尔泰山中部森林上树线附近的哈依萨萨依树轮宽度年表(HYS)对当年6-7月的月平均最低气温有明显的正相关(r=0.462,p〈0.001),但同时与当年1月的降水有很好的响应。  相似文献   

18.
The Gulf of Alaska (GOA) is highly sensitive to shifts in North Pacific climate variability. Here we present an extended tree-ring record of January–September GOA coastal surface air temperatures using tree-ring width data from coniferous trees growing in the mountain ranges along the GOA. The reconstruction (1514–1999), based on living trees, explains 44% of the temperature variance, although, as the number of chronologies decreases back in time, this value decreases to, and remains around ∼30% before 1840. Verification of the calibrated models is, however, robust. Utilizing sub-fossil wood, we extend the GOA reconstruction back to the early eighth century. The GOA reconstruction correlates significantly (95% CL) with both the Pacific Decadal Oscillation Index (0.53) and North Pacific Index (−0.42) and therefore likely yields important information on past climate variability in the North Pacific region. Intervention analysis on the GOA reconstruction identifies the known twentieth century climate shifts around the 1940s and 1970s, although the mid-1920s shift is only weakly expressed. In the context of the full 1,300 years record, the well studied 1976 shift is not unique. Multi-taper method spectral analysis shows that the spectral properties of the living and sub-fossil data are similar, with both records showing significant (95% CL) spectral peaks at ∼9–11, 13–14 and 18–19 years. Singular spectrum analysis identifies (in order of importance) significant oscillatory modes at 18.7, 50.4, 38.0, 91.8, 24.4, 15.3 and 14.1 years. The amplitude of these modes varies through time. It has been suggested (Minobe in Geophys Res Lett 26:855–858, 1999) that the regime shifts during the twentieth century can be explained by the interaction between pentadecadal (50.4 years) and bidecadal (18.7 years) oscillatory modes. Removal of these two modes of variance from our GOA time series does indeed remove the twentieth century shifts, but many are still identified prior to the twentieth century. Our analysis suggests that climate variability of the GOA is very complex, and that much more work is required to understand the underlying oscillatory behavior that is observed in instrumental and proxy records from the North Pacific region.
Rob WilsonEmail:
  相似文献   

19.
We analysed 565 increment cores from 325 Himalayan cedar [Cedrus deodara (Roxb.) G. Don] trees growing at 13 moisture-stressed, widely distributed sites in the western Himalayan region. We found a strong positive relationship between our tree-ring width chronologies and spring precipitation which enabled us to reconstruct precipitation back to a.d. 1560. This reconstruction is so far the longest in this region. The calibration model explains 40% variance in the instrumental data (1953–1997). The most striking feature of the reconstruction is the unprecedented increase in precipitation during the late twentieth century relative to the past 438 years. Both wet and dry springs occurred during the Little Ice Age. A 10-year running mean showed that the driest period occurred in the seventeenth century while the wettest period occurred in the twentieth century. Spectral analysis of the reconstructed series indicated a dominant 2-year periodicity.  相似文献   

20.
Little Ice Age (LIA) austral summer temperature anomalies were derived from palaeoequilibrium line altitudes at 22 cirque glacier sites across the Southern Alps of New Zealand. Modern analog seasons with temperature anomalies akin to the LIA reconstructions were selected, and then applied in a sampling of high-resolution gridded New Zealand climate data and global reanalysis data to generate LIA climate composites at local, regional and hemispheric scales. The composite anomaly patterns assist in improving our understanding of atmospheric circulation contributions to the LIA climate state, allow an interrogation of synoptic type frequency changes for the LIA relative to present, and provide a hemispheric context of the past conditions in New Zealand. An LIA summer temperature anomaly of ?0.56 °C (±0.29 °C) for the Southern Alps based on palaeo-equilibrium lines compares well with local tree-ring reconstructions of austral summer temperature. Reconstructed geopotential height at 1,000 hPa (z1000) suggests enhanced southwesterly flow across New Zealand occurred during the LIA to generate the terrestrial temperature anomalies. The mean atmospheric circulation pattern for summer resulted from a crucial reduction of the ‘HSE’-blocking synoptic type (highs over and to the west of NZ; largely settled conditions) and increases in both the ‘T’- and ‘SW’-trough synoptic types (lows passing over NZ; enhanced southerly and southwesterly flow) relative to normal. Associated land-based temperature and precipitation anomalies suggest both colder- and wetter-than-normal conditions were a pervasive component of the base climate state across New Zealand during the LIA, as were colder-than-normal Tasman Sea surface temperatures. Proxy temperature and circulation evidence were used to corroborate the spatially heterogeneous Southern Hemisphere composite z1000 and sea surface temperature patterns generated in this study. A comparison of the composites to climate mode archetypes suggests LIA summer climate and atmospheric circulation over New Zealand was driven by increased frequency of weak El Niño-Modoki in the tropical Pacific and negative Southern Annular Mode activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号