首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电磁测深数据地形影响的快速校正   总被引:4,自引:0,他引:4       下载免费PDF全文
薛国强  闫述  陈卫营 《地球物理学报》2016,59(12):4408-4413
地形起伏会对电磁法的数据产生一定影响,尤其会影响浅部地层电性结果的准确性.本文通过对地形影响基本规律、经典比值校正原理的分析,认为可以用实测标准电阻率替代数值模拟中均匀半空间电阻率,提出一种新的地形影响快速校正方法,即采用小极矩直流电阻率法获得无地形影响的表层电阻率值,作为地形校正的标准电阻率,以此构造一个新的校正公式.分别对CSAMT和TEM仿真和实际测量资料进行地形校正处理,效果较好.说明新的比值校正公式,是一种快速、有效和实用的校正算法.  相似文献   

2.
When performing forward modelling and inversion of Magnetic Resonance Sounding (MRS) data, the water-content distribution is typically assumed to be horizontal (1D case). This assumption is fully justified because MRS is often used for characterizing continuous aquifers in a nearly flat environment. However, MRS can also be used in areas with sharp topographical variations. Following a review of the standard MRS equations when using a coincident transmitter/receiver loop, the mathematical terms potentially affected by tilting of the loop are discussed. We present the results of a numerical modelling exercise, studying a case where the surface is not horizontal and the loop cannot be considered to be parallel to the top of the aquifer. This shows that maximum variations in the MRS-signal amplitude are caused mainly by north- or south-dipping slopes. Slope effects depend on the loop size (a larger loop produces a larger error) especially in the presence of shallow water. With a geomagnetic-field inclination of 65° and a slope angle ≤ 10°, the topography causes a maximum variation in amplitude of less than 10%. Near magnetic poles and equator, the slope effect is lower and undetectable in most cases. It was found that within a 10% range of variation in the amplitude, errors introduced into inversions are within the typical uncertainty for MRS inversion and hence no topographic corrections are necessary. Thus, a significant effect from non-horizontal topography might be expected only when data uncertainty is lower than the slope effect (the slope effect is lower than equivalence when data quality is poor). Today, most field data sets are inverted using the modulus of the MRS signal, but some new developments consider the complex signal (both modulus and phase). However, inversion of complex MRS signals, which would provide a higher sensitivity to groundwater distribution, may be affected by slope effect. Thus, the slope orientation and dip angle should be accurately measured in the field when the phase of MRS signals is inverted too.  相似文献   

3.
Recent models that couple three‐dimensional subsurface flow with two‐dimensional overland flow are valuable tools for quantifying complex groundwater/stream interactions and for evaluating their influence on watershed processes. For the modeler who is used to defining streams as a boundary condition, the representation of channels in integrated models raises a number of conceptual and technical issues. These models are far more sensitive to channel topography than conventional groundwater models. On all spatial scales, both the topography of a channel and its connection with the floodplain are important. For example, the geometry of river banks influences bank storage and overbank flooding; the slope of the river is a primary control on the behavior of a catchment; and at the finer scale bedform characteristics affect hyporheic exchange. Accurate data on streambed topography, however, are seldom available, and the spatial resolution of digital elevation models is typically too coarse in river environments, resulting in unrealistic or undulating streambeds. Modelers therefore perform some kind of manual yet often cumbersome correction to the available topography. In this context, the paper identifies some common pitfalls, and provides guidance to overcome these. Both aspects of topographic representation and mesh discretization are addressed. Additionally, two tutorials are provided to illustrate: (1) the interpolation of channel cross‐sectional data and (2) the refinement of a mesh along a stream in areas of high topographic variability.  相似文献   

4.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

5.
SV波入射下地形条件对大跨刚构桥地震响应的影响   总被引:1,自引:0,他引:1  
王蕾  赵成刚  屈铁军 《地震学报》2008,30(3):307-314
计算了SV波在3种角度入射下两座山峰及其间自由场地的时程响应, 并以此作为两座山峰之间大跨桥的桥台及桥墩基础处的多点地震输入.这种地震输入考虑了行波传播效应和地形效应的综合影响. 然后基于多点激励下桥梁地震响应分析方法, 计算了地形条件下总长440 m的高墩连续刚构桥的墩顶位移及墩底内力, 并与忽略地形条件仅考虑行波效应时结构的响应进行了对比分析. 该结果可为建于复杂地形条件下结构的抗震设计提供参考.   相似文献   

6.
A geoid solution for airborne gravity data   总被引:2,自引:0,他引:2  
Airborne gravity data is usually attached with satellite positioning of data points, which allow for the direct determination of the gravity disturbance at flight level. Assuming a suitable gridding of such data, Hotine’s modified integral formula can be combined with an Earth Gravity Model for the computation of the disturbing potential (T) at flight level. Based on T and the gravity disturbance data, we directly downward continue T to the geoid, and we present the final solution for the geoid height, including topographic corrections. It can be proved that the Taylor expansion of T converges if the flight level is at least twice the height of the topography, and the terrain potential will not contribute to the topographic correction. Hence, the simple topographic bias of the Bouguer shell yields the only topographic correction. Some numerical results demonstrate the technique used for downward continuation and topographic correction.  相似文献   

7.
A numerical comparison of 2D resistivity imaging with 10 electrode arrays   总被引:9,自引:0,他引:9  
Numerical simulations are used to compare the resolution and efficiency of 2D resistivity imaging surveys for 10 electrode arrays. The arrays analysed include pole‐pole (PP), pole‐dipole (PD), half‐Wenner (HW), Wenner‐α (WN), Schlumberger (SC), dipole‐dipole (DD), Wenner‐β (WB), γ‐array (GM), multiple or moving gradient array (GD) and midpoint‐potential‐referred measurement (MPR) arrays. Five synthetic geological models, simulating a buried channel, a narrow conductive dike, a narrow resistive dike, dipping blocks and covered waste ponds, were used to examine the surveying efficiency (anomaly effects, signal‐to‐noise ratios) and the imaging capabilities of these arrays. The responses to variations in the data density and noise sensitivities of these electrode configurations were also investigated using robust (L1‐norm) inversion and smoothness‐constrained least‐squares (L2‐norm) inversion for the five synthetic models. The results show the following. (i) GM and WN are less contaminated by noise than the other electrode arrays. (ii) The relative anomaly effects for the different arrays vary with the geological models. However, the relatively high anomaly effects of PP, GM and WB surveys do not always give a high‐resolution image. PD, DD and GD can yield better resolution images than GM, PP, WN and WB, although they are more susceptible to noise contamination. SC is also a strong candidate but is expected to give more edge effects. (iii) The imaging quality of these arrays is relatively robust with respect to reductions in the data density of a multi‐electrode layout within the tested ranges. (iv) The robust inversion generally gives better imaging results than the L2‐norm inversion, especially with noisy data, except for the dipping block structure presented here. (v) GD and MPR are well suited to multichannel surveying and GD may produce images that are comparable to those obtained with DD and PD. Accordingly, the GD, PD, DD and SC arrays are strongly recommended for 2D resistivity imaging, where the final choice will be determined by the expected geology, the purpose of the survey and logistical considerations.  相似文献   

8.
Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process‐oriented investigations of flow hydraulics, sediment dynamics and in‐stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through‐water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. While the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM‐photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary‐winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50–100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM‐photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
 Dike propagation and dilation increases the compression of adjacent rocks. On volcanoes, especially oceanic shields, dikes are accordingly thought to be structurally destabilizing. As compression is incremented, volcanic flanks are driven outward or downslope and thus increase their susceptibility to destructive earthquakes and giant landslides. We show, however, that the 2-m-thick dike emplaced along the east rift zone of Kilauea in 1983 actually stabilized that volcano's flank. Specifically, production of flank earthquakes dropped more than twofold after 1983 as maximum downslope motion slowed to 6 cm·year–1 from approximately 40 cm·year–1 during 1980–1982. As much as 65 cm of deflationary subsidence above Kilauea's summit and upper rift zones accompanied the dike intrusion. According to recent estimates, this deflation corresponds to a reduction in magma-reservoir pressure of approximately 4 MPa, probably about as much as the driving pressure of the 1983 dike. The volume of the dike, approximately 0.10–0.15 km3, is orders of magnitude less than the estimated 200- to 250-km3 volume of Kilauea's reservoir of magma and nearby hot, mushy rock. Thus, deflation of that reservoir reduces the compressional load on the flank over a much larger area than intrusion of the dike adds to it, particularly at the dominant depth of seismicity, 8–9 km. A Coulomb block model for flank motion during intervals between major earthquakes requires the low-angle fault beneath Kilauea's flank to exhibit slip weakening, conducive to earthquake instability. Accordingly, the triggering mechanism of destructive earthquakes, several of which have struck Hawaii during the past 150 years, need not require stresses accumulated by dike intrusions. Received: 27 October 1998 / Accepted: 24 May 1999  相似文献   

10.
起伏地表频域/时域航空电磁系统三维正演模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
由于航空电磁系统具有工作频率低、时间延迟短等特点,地形对航空电磁响应有很大影响,忽略地形影响会给航空电磁数据解释造成很大误差.本文将基于非结构化网格的矢量有限元法应用于模拟起伏地表条件下频域/时域(FD/TD)三维航空电磁系统响应.该方法由于采用非结构网格,与传统的结构化网格电磁正演算法相比,能更好地拟合地形和地下不规则异常体,提高对不规则地形和地下介质航空电磁响应的计算精度.通过将计算结果与半空间模型的半解析解及已发表的结果进行对比,检验了本文算法的精度.通过对典型山峰和山谷地形航空电磁响应分析对比,总结了地形对航空电磁响应的影响特征.研究结果对航空电磁地形效应的识别和校正具有指导意义.  相似文献   

11.
局部山体地形对强地面运动的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王铭锋  郑傲  章文波 《地球物理学报》2017,60(12):4655-4670
基于曲线网格有限差分方法研究了地震波在不同坡度的山体地形及水平地表模型中的传播,得到了各模型速度波形及地表峰值速度特征,从地形自身特征及震源特征两方面出发讨论了地形效应:一是相同的震源模型下地形坡度、形状对地震动的影响;二是同一山体模型下地震动对不同震源机制的点源以及相对复杂的有限断层的响应.主要结论如下:(1)一般情况下,地形放大效应在坡度较大的地方比较明显,并随着坡度的增加而增大,但在某些特定情况下,放大效应与坡度并不满足正相关,且这种情况的发生与震源性质无关,可能仅受地形形态自身的影响;(2)对于不同的震源机制,地面运动各分量受地形影响程度不同,总体上水平分量受地形影响程度更大;(3)震源机制和震源激发的波的频率会影响放大效应最大值出现的位置,放大效应最大值不一定出现在山顶处,有可能会出现在起伏地形的震源对侧,出现位置可能与波的相互作用有关;(4)有限断层模型下,地面运动特征相对更为复杂,地形效应不仅受断层模型几何特征的影响,同时断层破裂过程对其也有着重要的影响.  相似文献   

12.
Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. ‘doming’), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined (<15°) camera can reduce accuracy by promoting a previously unconsidered correlation between decentring camera lens distortion parameters and the radial terms known to be responsible for systematic topographic error. This issue is particularly relevant for the wide-angle cameras often integrated into current-generation, accessible UAV systems, frequently used in geomorphic research. Such systems usually perform on-board image pre-processing, including applying generic lens distortion corrections, that subsequently alter parameter interrelationships in photogrammetric processing (e.g. partially correcting radial distortion, which increases the relative importance of decentring distortion in output images). Surveys from two proglacial forefields (Arolla region, Switzerland) showed that results from lower-relief topography with a 10°-inclined camera developed vertical systematic doming errors > 0·3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was < 0·09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

13.
Due to the increasing popularity of analyzing empirical Green’s functions obtained from ambient seismic noise, more and more regional tomographical studies based on short-period surface waves are published. Results could potentially be biased in mountainous regions where topography is not small compared to the wavelength and penetration depth of the considered waves. We investigate the effect of topography on the propagation of short-period Rayleigh waves empirically by means of synthetic data using a spectral element code and a 3-D model with real topography. We show that topography along a profile through the studied area can result in an underestimation of phase velocities of up to about 0.7% at the shortest investigated period (3 s). Contrary to the expectation that this bias results from the increased surface distance along topography, we find that this error can be estimated by local topographic contrasts in the vicinity of the receiver alone. We discuss and generalize our results by considering topographic profiles through other mountain ranges and find that southern Norway is a good proxy to assess the topography effect. Nevertheless, topographic bias on phase velocity measurements is in general not large enough to significantly affect recovered velocity variations in the ambient noise frequency range.  相似文献   

14.
Basalts dredged along the Mid-Atlantic Ridge axis between 10°N and 17°N have been studied for their trace element characteristics [1]. To give complementary information on mantle source history and magma genesis, these samples have been analysed for their SrNdPb isotopic compositions. There is a good correlation between the structure of the ridge axis which shows a topographic anomaly centered around 14°N and hygromagmaphile element ratios such as Rb/Sr, (Nb/Zr)N or Sm/Nd as well as isotopic ratios plotted as a function of latitude. The samples coming from the 14°N topographic high show new MORB SrNd isotopic characteristics which pictured in a classical mantle array diagram, put their representative points close to HIMU sources of ocean islands such as St. Helena, Tubuaïand Mangaia. The 14°N mantle source presents geochemical characteristics which indicate mantle differentiation processes and a mantle history that are more distinct than so far envisaged from typical MORB data. Pb data indicates that the 14°N mantle source cannot be the result of binary mixing between a depleted mantle and a HIMU-type source. Rather, the enriched endmember could itself be a mixture of Walvis-like and HIMU-like materials. The geochimical observations presented favour the model of an incipient ridge-centered plume, in agreement with [1].  相似文献   

15.
Various methods for computing the terrain correction in a high‐precision gravity survey are currently available. The present paper suggests a new method that uses linear analytical terrain approximations. In this method, digital terrain models for the near‐station topographic masses are obtained by vectorizing scan images of large‐scaled topographic maps, and the terrain correction computation is carried out using a Fourier series approximation of discrete height values. Distant topography data are represented with the help of digital GTOPO30 and Shuttle Radar Topography Mission cartographic information. We formulate linear analytical approximations of terrain corrections for the whole region using harmonic functions as the basis of our computational algorithm. Stochastic modelling allows effective assessment of the accuracy of terrain correction computation. The Perm Krai case study has shown that our method makes full use of all the terrain data available from topographic maps and digital terrain models and delivers a digital terrain correction computed to a priori precision. Our computer methodology can be successfully applied for the terrain correction computation in different survey areas.  相似文献   

16.
Resistivity prospecting is the main tool used to investigate the shallow structure of the ground. A series of new techniques for determining the 2-D and 3-D geometry of the ground is now finding increasing use, but the light and simple Wenner prospecting technique remains a practical and efficient tool for rapidly mapping lateral variations in resistivity. When the resistivity changes are smooth, 1-D modelling can be used to interpret the data, and the criteria governing this approximation can be defined from synthetic data generated by a 3-D slab-model. For a Wenner array, two quadripole configurations can be used, Normal and Dipole-Dipole. For these two configurations the width of the transition zone, the apparent anisotropy effect and the precision of the resistivity values recovered from 1-D inversion differ. However the simultaneous inversion of both sets of data gives better results than for either configuration by itself. Two examples illustrate that in geological contexts where the thickness of the weathered zone causes the changes in the apparent resistivity value, this parameter can be recovered from 1-D inversion.  相似文献   

17.
In this paper we explore the optimum assimilation of high‐resolution data into numerical models using the example of topographic data provision for flood inundation simulation. First, we explore problems with current assimilation methods in which numerical grids are generated independent of topography. These include possible loss of significant length scales of topographic information, poor representation of the original surface and data redundancy. These are resolved through the development of a processing chain consisting of: (i) assessment of significant length scales of variation in the input data sets; (ii) determination of significant points within the data set; (iii) translation of these into a conforming model discretization that preserves solution quality for a given numerical solver; and (iv) incorporation of otherwise redundant sub‐grid data into the model in a computationally efficient manner. This processing chain is used to develop an optimal finite element discretization for a 12 km reach of the River Stour in Dorset, UK, for which a high‐resolution topographic data set derived from airborne laser altimetry (LiDAR) was available. For this reach, three simulations of a 1 in 4 year flood event were conducted: a control simulation with a mesh developed independent of topography, a simulation with a topographically optimum mesh, and a further simulation with the topographically optimum mesh incorporating the sub‐grid topographic data within a correction algorithm for dynamic wetting and drying in fixed grid models. The topographically optimum model is shown to represent better the ‘raw’ topographic data set and that differences between this surface and the control are hydraulically significant. Incorporation of sub‐grid topographic data has a less marked impact than getting the explicit hydraulic calculation correct, but still leads to important differences in model behaviour. The paper highlights the need for better validation data capable of discriminating between these competing approaches and begins to indicate what the characteristics of such a data set should be. More generally, the techniques developed here should prove useful for any data set where the resolution exceeds that of the model in which it is to be used. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The hydraulic head distribution in a wedge-shaped aquifer depends on the wedge angle and the topographic and hydrogeological boundary conditions. In addition, an equation in terms of the radial distance with trigonometric functions along the boundary may be suitable to describe the water level configuration for a valley flank with a gentle sloping and rolling topography. This paper develops a general mathematical model including the governing equation and a variety of boundary conditions for the groundwater flow within a wedge-shaped aquifer. Based on the model, a new closed-form solution for transient flow in the wedge-shaped aquifer is derived via the finite sine transform and Hankel transform. In addition, a numerical approach, including the roots search scheme, the Gaussian quadrature, and Shanks’ method, is proposed for efficiently evaluating the infinite series and the infinite integral presented in the solution. This solution may be used to describe the head distribution for wedges that image theory is inapplicable, and to explore the effects of the recharge from various topographic boundaries on the groundwater flow system within a wedge-shaped aquifer.  相似文献   

19.
2.5维起伏地表条件下时间域航空电磁正演模拟   总被引:7,自引:5,他引:2       下载免费PDF全文
时间域航空电磁作为一种高效地球物理勘探技术特别适合我国地形复杂地区(沙漠、高山、湖泊、沼泽等)资源勘查.然而,这些地区地形起伏较大,对航空电磁响应有严重影响,忽略地形影响会给航空电磁数据解释造成很大误差.到目前为止人们对航空电磁地形效应特征研究十分有限.本文提出了基于非结构化网格的有限元法模拟带地形时间域航空电磁系统响应.该方法与基于结构化网格的有限差分相比能更好地模拟地形.首先通过傅里叶变换将2.5维问题转化成二维问题,利用伽辽金方法对二维问题进行离散.通过使用MUMPS求解器,得到波数域电磁响应.利用反傅里叶变换将波数域电磁响应变换到空间域,并利用正弦变换将其变换到时间域,得到2.5维时间域航空电磁响应.通过将本文的计算结果与半空间模型解析解及其他已发表的结果进行对比,检验了本文算法的精度.最后,我们系统分析了山峰和山谷地形对航空响应的影响特征.本文研究结果对航空电磁地形效应的识别和校正具有指导意义.  相似文献   

20.
A model for topographic correction and land surface reflectance estimation for optical remote sensing data in rugged terrian is presented.Considering a directional-directional reflectance that is used for direct solar irradiance correction and a hemispheric-directional reflectance that is used for atmospheric diffuse irradiance and terrain background reflected irradiance correction respectively,the directional reflectance-based model for topographic effects removing and land surface reflectance calculation is developed by deducing the directional reflectance with topographic effects and using a radiative transfer model.A canopy reflectance simulated by GOMS model and Landsat/TM raw data covering Jiangxi rugged area were taken to validate the performance of the model presented in the paper.The validation results show that the model presented here has a remarkable ability to correct topography and estimate land surface reflectance and also provides a technique method for sequently quantitative remote sensing application in terrain area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号