首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
精密单点定位方法估计对流层延迟精度分析   总被引:4,自引:0,他引:4  
在简要描述精密单点定位估计天顶对流层延迟方法的基础上,分别采用IGS事后产品和实时产品处理了若干IGS跟踪站数据,估计出各站天顶对流层延迟,其中,实时精密卫星星历与钟差处理方案采用事后下载实时产品、事后模拟实时处理的方式。与IGS结果相比,利用精密单点定位方法,采用IGS事后精密星历与卫星钟差估计的结果无明显的偏差,其精度优于6 mm;采用实时精密卫星星历与卫星钟差模拟估计的结果精度优于20 mm。  相似文献   

2.
本文首先介绍了GPS精密单点定位技术,采用宽巷组合的方法得到观测方程。然后对精密定位中的误差改正作了简述,主要讨论了处理对流层延迟的Saastamoinen模型和Niell映射函数。提出用扩展卡尔曼滤波参数估计方法来处理对流层延迟,通过实例用Saastamoinen模型、Saastamoinen模型加Niell映射函数和扩展卡尔曼滤波参数估计三种方法对对流层延迟进行改正,结果表明该方法优于Saastamoinen模型。  相似文献   

3.
对GPS对流层延迟改正的两种方法——UNB3模型改正法和参数估计法进行深入的探讨。在精密单点定位程序中,分别利用两种方法对IGS跟踪站数据进行坐标计算。结果表明,参数估计法在高程方向上的精度优于UNB3模型改正法,平面坐标精度相当;UNB3模型改正法在收敛速度上略优于参数估计法。  相似文献   

4.
为了分析不同卫星星历对天顶对流层延迟估计的影响,本文选取不同的卫星星历产品分别进行静态精密单点定位试验,估计天顶对流层延迟,并与IGS发布的天顶对流层延迟产品相比。结果表明,采用最终星历、快速星历和超快星历实测部分时,天顶对流层延迟的平均RMS值分别为4.5mm、4.3mm和4.6mm,估计精度一致。而采用超快星历外推部分时,平均RMS值为6.3mm,估计精度略低。  相似文献   

5.
通过全球导航卫星(GNSS)系统获取对流层天顶延迟对于气象和电波折射修正具有重要应用价值。利用自主研发的静态精密单点定位软件CRPPP,基于国际GNSS地球动力学服务局(IGS)发布的北斗系统(BDS)精密星历和精密钟差,给出了BDS估算天顶延迟结果。以IGS发布的全球定位系统(GPS)结果为参考对比,BDS估算天顶延迟结果平均偏差优于5mm,均方根误差(rms)优于2.3cm.同时,给出了西沙地区GPS与BDS估计结果,结果表明:利用北斗系统估计的对流层天顶延迟精度与GPS相当。  相似文献   

6.
PPP估计天顶对流层延迟方法与结果分析   总被引:2,自引:0,他引:2  
介绍了精密单点定位估计天顶对流层延迟的方法,利用武汉大学研发的TriP软件解算了7个IGS跟踪站的天顶对流层延迟,将其与IGS分析中心提供的天顶对流层延迟数据进行了对比分析。  相似文献   

7.
基于非气象参数的对流层延迟估计建模的研究日趋成熟,其应用范围也不断拓宽。主要研究了其在精密单点定位中的应用,从定位精度和收敛时间两个方面分析了其应用效果。经过实验验证,在应用了非气象参数估计模型以后,定位的收敛时间得到显著改善,加快了约23%,同时其对定位精度的影响不显著。  相似文献   

8.
为了确定对流层延迟参数的自相关性及其与坐标参数的互相关性,本文研究采用随机卡尔曼滤波进行精密单点定位解算。根据自相关原理计算出对流层天顶延迟误差的自相关函数,采用4种经验函数模型分别对自相关函数进行拟合,结果表明exponential-cos为最佳拟合模型;对对流层天顶延迟误差与坐标垂直分量误差的互相关性进行了分析,结果表明二者显著负线性相关;坐标垂直分量误差波动幅度是对流层天顶延迟误差波动幅度的4倍左右;卫星截止高度角越低,参数相关性越强。  相似文献   

9.
在精密单点定位中,通过有效的方法减小对流层误差源对定位精度的影响。其中Saastamoinen模型和Niell模型对减小对流层延迟误差效果较好。重点介绍了这两种模型,并通过实验分析了两种模型在精密单点定位中对对流层延迟误差的改正效果。实验结果以标准偏差和均方根的形式给出,说明了Saastamoinen模型与Niell模型对定位结果都有所改善,但Niell模型结果较好。  相似文献   

10.
研究了非差GPS精密单点测量中几种常用的随机模型,提出了基于卫星低仰角的cosine平方随机模型。对上海IGS站和北京IGS站的观测数据分别进行了处理,结果表明,利用cosine平方随机模型的天顶延迟结果优于传统的随机模型结果。  相似文献   

11.
利用PPP技术估计对流层延迟,并设计实验对比分析了各单系统和多系统组合下对流层延迟的估计精度;讨论了不同对流层投影函数对对流层延迟估值的影响;最后以武汉市为例,探讨了对流层延迟与季节变化的相关性。结果表明,利用PPP估计的GPS ZTD、BDS ZTD、GLONASS ZTD、GPS/BDS ZTD、GPS/GLONASS ZTD、GPS/BDS/GLONASS ZTD精度均优于2 cm,且组合系统估计的对流层延迟明显比单系统稳定,精度明显提高;不同对流层投影函数对单系统估计影响较大,对组合系统估计影响较小;武汉市夏季对流层延迟大于冬季,但冬季对流层延迟的湿延迟变化较大,夏季对流层延迟的湿延迟变化小。  相似文献   

12.
设计4种实验方案分析了对流层延迟参数估计方法对PPP数据处理的影响。结果表明,采用分段线性方法估计天顶湿延迟比分段常数方法估计得到的天顶湿延迟、定位结果精度略高;静态PPP解算得到的天顶对流层湿延迟优于5 mm,高程方向的定位精度可达1 cm左右;动态PPP定位精度略低,高程方向可达2cm左右。同时,考虑对流层湿延迟水平梯度在一定程度上能改善PPP的处理结果。  相似文献   

13.
为确定对流层延迟参数与坐标参数的相关性,采用随机卡尔曼滤波进行精密单点定位解算,以静态模式下的参数估值为真值,对动态模式下的坐标垂直分量与对流层天顶湿延迟误差进行相关性分析与回归分析.结果表明二者显著负线性相关,坐标垂直分量误差波动幅度是对流层天顶湿延迟误差波动幅度的4倍左右;卫星截止高度角越低,参数相关性越强.在估计中有效利用这一相关性特点,可以提高参数估计的精度.  相似文献   

14.
15.
为研究IGS精密轨道和钟差产品对天顶对流层延迟精度的影响,文章利用位于中国北京、上海、拉萨等地的6个IGS跟踪站所提供的2013年4月7日~10日4天的数据,采用GPSTools软件进行实验,计算各跟踪站的天顶对流层延迟(ZTD),并与IGS提供的对流层延迟产品进行对比.结果表明,利用IGS精密轨道解算的ZTD与IGS提供的ZTD相当,两者偏差的平均RMS优于5mm,利用IGS超快速钟差预报部分解算的ZTD与IGS提供的ZTD存在2cm~3cm误差,平均RMS大于1cm.  相似文献   

16.
卫星定位中对流层延迟模型对比分析   总被引:3,自引:1,他引:2  
对流层延迟是全球导航卫星系统(GNSS)定位中的重要误差源之一,本文对其产生机理进行了理论分析;对常用的Saastamoinen、Hopfield、Black和EGNOS 4种对流层延迟改正模型进行了详细的论述;选取国际GNSS服务(IGS)全球观测站中位于中国的6个站,利用全球大地测量观测系统(GGOS)提供的气象数据,对4种模型在这些站点的(ZTD)进行了计算。以IGS提供的ZTD数据作参考,对4种模型在各个站点的改正效果进行了对比分析,给出并分析了其偏差和均方根差,客观评价了其优劣,为国内GNSS卫星精确定位时对流层延迟改正模型的选择提供了参考依据。  相似文献   

17.
针对卫星信号中断后PPP需要重新收敛的问题,根据对流层延迟参数在短期内变化不大的特点,利用PPP中断前估计的比较精确的对流层延迟参数作为先验信息,提出了一种附加先验对流层信息约束的PPP模型加快PPP的重新收敛。实验结果表明,附加先验对流层信息约束模型的PPP重新收敛过程明显快于传统模型。附加先验对流层延迟信息的标准差越小,约束条件越强,PPP的重新收敛就越快。  相似文献   

18.
分析了单频GPS精密单点定位的特点,提出了先在卫星间求差,再在相邻历元间求差的单频GPS动态定位数学模型,实现了定位坐标的非线性参数估计求解方法。为了降低电离层延迟残差对单频PPP的影响,研究建立了一种相对电离层延迟模型,并基于神经网络理论,实现了相应的算法,通过计算实例进行了精度分析。  相似文献   

19.
GPS定位中对流层折射估计研究   总被引:34,自引:6,他引:34  
葛茂荣  刘经南 《测绘学报》1996,25(4):285-291
本文首先讨论了GPS相对定位中的对流层折射2估计的单参数方法,多参数方法,分估线性方法和随机过程方法。论证了其它方法都是随机过程方法的近似。为了用随机过程模拟对流折射,建立了一种最小二乘递推算法。在此基础上,在GAMIT软件中统一实现了以各种对流层折射估计方法。最后给出并分析了不同方法所获得的结果。  相似文献   

20.
在详细分析高差以及对流层延迟水平变化对GPS测量精度影响的基础上,通过Bernese软件估算香港连续参考站网基站数年的天顶对流层延迟,建立了符合香港地区的只需时间与位置输入参数的精密对流层延迟改正模型。经检验,新模型的对流层改正精度与输入标准气象的Saastamoinen模型相比提高了约2~3倍,对高差较大的对流层延迟改正效果更加显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号