共查询到9条相似文献,搜索用时 15 毫秒
1.
This paper presents an approach to automated identification of slum area change patterns in Hyderabad, India, using multi-year and multi-sensor very high resolution satellite imagery. It relies upon a lacunarity-based slum detection algorithm, combined with Canny- and LSD-based imagery pre-processing routines. This method outputs plausible and spatially explicit slum locations for the whole urban agglomeration of Hyderabad in years 2003 and 2010. The results indicate a considerable growth of area occupied by slums between these years and allow identification of trends in slum development in this urban agglomeration. 相似文献
2.
Artisanal gold mining (galamsey) and cocoa farming are essential sources of income for local populations in Ghana. Unfortunately the former poses serious threats to the environment and human health, and conflicts with cocoa farming and other livelihoods. Timely and spatially referenced information on the extent of galamsey is needed to understand and limit the negative impacts of mining. To address this, we use multi-date UK-DMC2 satellite images to map the extent and expansion of galamsey from 2011 to 2015. We map the total area of galamsey in 2013 over the cocoa growing area, using k-means clustering on a cloud-free 2013 image with strong spectral contrast between galamsey and the surrounding vegetation. We also process a pair of hazy images from 2011 and 2015 with Multivariate Alteration Detection to map the 2011–2015 galamsey expansion in a subset, labelled the change area. We use a set of visually interpreted random sample points to compute bias-corrected area estimates. We also delineate an indicative impact zone of pollution proportional to the density of galamsey, assuming a maximum radius of 10 km. In the cocoa growing area of Ghana, the estimated total area of galamsey in 2013 is 27,839 ha with an impact zone of 551,496 ha. In the change area, galamsey has more than tripled between 2011 and 2015, resulting in 603 ha of direct encroachment into protected forest reserves. Assuming the same growth rate for the rest of the cocoa growing area, the total area of galamsey in 2015 is estimated at 43,879 ha. Galamsey is developing along most of the river network (Offin, Ankobra, Birim, Anum, Tano), with downstream pollution affecting both land and water. 相似文献
3.
Maria Kampouri Polychronis Kolokoussis Demetre Argialas Vassilia Karathanassi 《国际地球制图》2013,28(12):1273-1285
AbstractThe aim of this study is to investigate the potential of Sentinel-2 imagery for the identification and determination of forest patches of particular interest, with respect to ecosystem integrity and biodiversity and to produce a relevant biodiversity map, based on Simpson’s diversity index in Taxiarchis university research forest, Chalkidiki, North Greece. The research is based on OBIA being developed on to bi-temporal summer and winter Sentinel-2 imagery. Fuzzy rules, which are based on topographic factors, such as terrain elevation and slope for the distribution of each tree species, derived from expert knowledge and field observations, were used to improve the accuracy of tree species classification. Finally, Simpson’s diversity index for forest tree species, was calculated and mapped, constituting a relative indicator for biodiversity for forest ecosystem organisms (fungi, insects, birds, reptiles, mammals) and carrying implications for the identification of patches prone to disturbance or that should be prioritized for conservation. 相似文献
4.
Olivier R. van Lier Richard A. Fournier Robert L. Bradley Nelson Thiffault 《International Journal of Applied Earth Observation and Geoinformation》2009,11(5):334-343
Invasive ericaceous shrubs (e.g. Kalmia angustifolia, Rhododendron groenlandicum, Vaccinium spp.) may reduce the regeneration and early growth of black spruce (Picea mariana) seedlings, the most economically important boreal tree species in Quebec. Our study focused, therefore, on developing a method for mapping ericaceous shrubs from satellite images. The method integrates very high resolution satellite imagery (IKONOS) to guide classifiers applied to medium resolution satellite imagery (Landsat-TM). An object-oriented image classification approach was applied using Definiens eCognition software. An independent ground survey revealed 80% accuracy at the very high spatial resolution. We found that the partial use (70%) of classified polygons derived from the IKONOS images were an effective way to guide classification algorithms applied to the Landsat-TM imagery. The results of this latter classification (78.4% overall accuracy) were assessed by the remaining portion (30%) of unused very high resolution classified polygons. We further validated our method (65.5% overall accuracy) by assessing the correspondence of an ericaceous cover classification scheme done with a Landsat-TM image and results of our ground survey using an independent set of 275 sample plots. Discrimination of ericaceous shrub cover from other land cover types was achieved with precision at both spatial resolutions with producer accuracies of 87.7% and 79.4% from IKONOS and Landsat, respectively. The method is weaker for areas with sparse cover of ericaceous shrubs or dense tree cover. Our method is adapted, therefore, for mapping the spatial distribution of ericaceous shrubs and is compatible with existing forest stand maps. 相似文献
5.
The leaf area index (LAI) of plant canopies is an important structural parameter that controls energy, water, and gas exchanges of plant ecosystems. Remote sensing techniques may offer an alternative for measuring and mapping forest LAI at a landscape scale. Given the characteristics of high spatial/spectral resolution of the WorldView-2 (WV2) sensor, it is of significance that the textural information extracted from WV2 multispectral (MS) bands will be first time used in estimating and mapping forest LAI. In this study, LAI mapping accuracies would be compared from (a) spatial resolutions between 2-m WV2 MS data and 30-m Landsat TM imagery, (b) the nature of variables between spectrum-based features and texture-based features, and (c) sensors between TM and WV2. Therefore spectral/textural features (SFs) were first selected and tested; then a canonical correlation analysis was performed with different data sets of SFs and LAI measurement; and finally linear regression models were used to predict and map forest LAI with canonical variables calculated from image data. The experimental results demonstrate that for estimating and mapping forest LAI, (i) using high resolution data (WV2) is better than using relatively low resolution data (TM); (ii) extracted from the same WV2 data, texture-based features have higher capability than that of spectrum-based features; (iii) a combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping forest LAI than their either one separately; and (iv) WV2 sensor outperforms TM sensor significantly. However, we need to address the possible overfitting phenomenon that might be brought in by using more input variables to develop models. In addition, the experimental results also indicate that the red-edge band in WV2 was the worst on estimating LAI among WV2 MS bands and the WV2 MS bands in the visible range had a much higher correlation with ground measured LAI than that red-edge and NIR bands did. 相似文献
6.
Assessing soil salinity using WorldView-2 multispectral images in Timpaki,Crete, Greece 总被引:2,自引:0,他引:2
Salinization is one of the major soil degradation threats occurring worldwide. This study evaluates the feasibility of operational surface soil salinity mapping based on state-of-the-art Earth Observation (EO) products captured by sensors on-board WorldView-2 (WV2) and Landsat 8 satellites. The proposed methods are tested in Timpaki, south-central Crete,Greece, where brackish water irrigation puts soil health at risk of soil salinization. In all cases, EO products are calibrated against soil samples collected from bare soil locations. Results indicate a moderate correlation of observed ECe values with the investigated remote sensing parameters. Regarding sensitivity to saline soil, the yellow band displays higher values. Comparison between methods used in the literature shows that those developed specifically for soil salinity, and especially index S5, perform better. The proposed ‘detection index’ and 3D PCA transformation methodology perform reasonably well in detecting areas with high ECe values and provide a simple and effective operational alternative for saline topsoil detection and mapping. 相似文献
7.
Satellite-based atmospheric CO2 observations have provided a great opportunity to improve our understanding of the global carbon cycle. However, thermal infrared (TIR)-based satellite observations, which are useful for the investigation of vertical distribution and the transport of CO2, have not yet been studied as much as the column amount products derived from shortwave infrared data. In this study, TIR-based satellite CO2 products – from Atmospheric Infrared Sounder, Tropospheric Emission Spectrometer (TES), and Thermal And Near infrared Sensor for carbon Observation – and carbon tracker mole fraction data were compared with in situ Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL) data for different locations. The TES CO2 product showed the best agreement with CONTRAIL CO2 data resulting in R2 ~ 0.87 and root-mean-square error ~0.9. The vertical distribution of CO2 derived by TES strongly depends on the geophysical characteristics of an area. Two different climate regions (i.e., southeastern Japan and southeastern Australia) were examined in terms of the vertical distribution and transport of CO2. Results show that while vertical distribution of CO2 around southeastern Japan was mainly controlled by horizontal and vertical winds, horizontal wind might be a major factor to control the CO2 transport around southeastern Australia. In addition, the vertical transport of CO2 also varies by region, which is mainly controlled by anthropogenic CO2, and horizontal and omega winds. This study improves our understanding of vertical distribution and the transport of CO2, both of which vary by region, using TIR-based satellite CO2 observations and meteorological variables. 相似文献
8.
The objective of this study was to identify an appropriate spatial resolution for discriminating forest vegetation at subspecies level. WorldView-2 imagery was progressively resampled to coarser spatial resolutions. At a compartment level, 30 × 30-m subsets were generated across forest compartments to represent the five forest subspecies investigated in this study. From the centre of each subset, the spatial resolution of the original WorldView-2 image was resampled from 6 to 34-m, with increments of 4-m. The variance was then calculated at every resampled spatial resolution using each of the eight WorldView-2 bands. Based on the sampling theorem, the 3-m spatial resolution provided an appropriate resolution for all subspecies investigated. The WorldView-2 image was subsequently classified using the partial least squares linear discriminant analysis algorithm and the appropriate spatial resolution. An overall classification accuracy of 90% was established with an allocation disagreement of 9 and a quantity disagreement of 1. 相似文献
9.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests. 相似文献