首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
India is a rapidly urbanizing country and has experienced profound changes in the spatial structure of urban areas. This study endeavours to illuminate the process of urbanization in India using Defence Meteorological Satellites Program – Operational Linescan System (DMSP-OLS) night time lights (NTLs) and SPOT vegetation (VGT) dataset for the period 1998–2008. Satellite imagery of NTLs provides an efficient way to map urban areas at global and national scales. DMSP/OLS dataset however lacks continuity and comparability; hence the dataset was first intercalibrated using second order polynomial regression equation. The intercalibrated dataset along with SPOT-VGT dataset for the year 1998 and 2008 were subjected to a support vector machine (SVM) method to extract urban areas. SVM is semi-automated technique that overcomes the problems associated with the thresholding methods for NTLs data and hence enables for regional and national scale assessment of urbanization. The extracted urban areas were validated with Google Earth images and global urban extent maps. Spatial metrics were calculated and analyzed state-wise to understand the dynamism of urban areas in India. Significant changes in urban proportion were observed in Tamil Nadu, Punjab and Kerala while other states also showed a high degree of changes in area wise urban proportion.  相似文献   

2.
An accurate map of forest types is important for proper usage and management of forestry resources. Medium resolution satellite images (e.g., Landsat) have been widely used for forest type mapping because they are able to cover large areas more efficiently than the traditional forest inventory. However, the results of a detailed forest type classification based on these images are still not satisfactory. To improve forest mapping accuracy, this study proposed an operational method to get detailed forest types from dense Landsat time-series incorporating with or without topographic information provided by DEM. This method integrated a feature selection and a training-sample-adding procedure into a hierarchical classification framework. The proposed method has been tested in Vinton County of southeastern Ohio. The detailed forest types include pine forest, oak forest, and mixed-mesophytic forest. The proposed method was trained and validated using ground samples from field plots. The three forest types were classified with an overall accuracy of 90.52% using dense Landsat time-series, while topographic information can only slightly improve the accuracy to 92.63%. Moreover, the comparison between results of using Landsat time-series and a single image reveals that time-series data can largely improve the accuracy of forest type mapping, indicating the importance of phenological information contained in multi-seasonal images for discriminating different forest types. Thanks to zero cost of all input remotely sensed datasets and ease of implementation, this approach has the potential to be applied to map forest types at regional or global scales.  相似文献   

3.
Low and moderate spatial resolution satellite sensors (such as TOMS, AVHRR, SeaWiFS) have already shown their capability in tracking aerosols at a global scale. Sensors with moderate to high spatial resolution (such as MODIS and MERIS) seem also to be appropriate for aerosol retrieval at a regional scale. We investigated in this study the potential of MERIS-ENVISAT data to resolve the horizontal spatial distribution of aerosols over urban areas, such as the Athens metropolitan area, by using the differential textural analysis (DTA) code. The code was applied to a set of geo-corrected images to retrieve and map aerosol optical thickness (AOT) values relative to a reference image assumed to be clean of pollution with a homogeneous atmosphere. The comparison of satellite retrieved AOT against PM10 data measured at ground level showed a high positive correlation particularly for the AOT values calculated using the 5th MERIS’ spectral band (R2=0.83). These first results suggest that the application of the DTA code on cloud free areas of MERIS images can be used to provide AOT related to air quality in this urban region. The accuracy of retrieved AOT mainly depends on the overall quality, the pollution cleanness and the atmospheric homogeneity of the reference image.  相似文献   

4.
城市建设用地能够反映城市建设发展在地域空间上的分布形态,是规划主管部门监测城市建设和扩张的关键指标.2018-06-02发射的珞珈一号卫星可提供130 m分辨率的夜间灯光数据,在城市建设用地的提取方面具有较大潜力.首先整合珞珈一号夜间灯光影像与Landsat 8多光谱影像以及网络地图兴趣点数据;然后分别采用人类居住合成...  相似文献   

5.
An improved methodology for the extraction and mapping of urban built-up areas at a global scale is presented in this study. The Moderate Resolution Imaging Spectroradiometer (MODIS)-based multispectral data were combined with the Visible Infrared Imager Radiometer Suite (VIIRS)-based nighttime light (NTL) data for robust extraction and mapping of urban built-up areas. The MODIS-based newly proposed Urban Built-up Index (UBI) was combined with NTL data, and the resulting Enhanced UBI (EUBI) was used as a single master image for global extraction of urban built-up areas. Due to higher variation of the EUBI with respect to geographical regions, a region-specific threshold approach was used to extract urban built-up areas. This research provided 500-m-resolution global urban built-up map of year 2014. The resulted map was compared with three existing moderate-resolution global maps and one high-resolution map in the United States. The comparative analysis demonstrated finer details of the urban built-up cover estimated by the resultant map.  相似文献   

6.
Most studies have the achieved rapid and accurate determination of soil organic carbon (SOC) using laboratory spectroscopy; however, it remains difficult to map the spatial distribution of SOC. To predict and map SOC at a regional scale, we obtained fourteen hyperspectral images from the Gaofen-5 (GF-5) satellite and decomposed and reconstructed the original reflectance (OR) and the first derivative reflectance (FDR) using discrete wavelet transform (DWT) at different scales. At these different scales, as inputs, we selected the 3 optimal bands with the highest weight coefficient using principal component analysis and chose the normalized difference index (NDI), ratio index (RI) and difference index (DI) with the strongest correlation with the SOC content using a contour map method. These inputs were then used to build regional-scale SOC prediction models using random forest (RF), support vector machine (SVM) and back-propagation neural network (BPNN) algorithms. The results indicated that: 1) at a low decomposition scale, DWT can effectively eliminate the noise in satellite hyperspectral data, and the FDR combined with DWT can improve the SOC prediction accuracy significantly; 2) the method of selecting inputs using principal component analysis and a contour map can eliminate the redundancy of hyperspectral data while retaining the physical meaning of the inputs. For the model with the highest prediction accuracy, the inputs were all derived from the wavelength range of SOC variations; 3) the differences in prediction accuracy among the different prediction models are small; and 4) the SOC prediction accuracy using hyperspectral satellite data is greatly improved compared with that of previous SOC prediction studies using multispectral satellite data. This study provides a highly robust and accurate method for predicting and mapping regional SOC contents.  相似文献   

7.
本文在对1∶500地形图与其自身影像图配准误差分析的基础上,提出了一种基于最小二乘法的区域整体最优匹配选取控制点的方法,主要针对在GIS中从地形图上选取控制点来配准影像图。本文在对新方法进行了论述,并通过对浙江温州地区一幅栅格图像与1∶500 GIS数据进行配准控制点选择实验,对比传统方法它能够克服由于影像分辨率和人工对影像刺点所带来的系统误差,大幅度提高配准精度,使得不同空间尺度下的地图数据实现精确配准。  相似文献   

8.
地表覆盖分类数据对区域森林叶面积指数反演的影响   总被引:2,自引:0,他引:2  
以江西省吉安市为研究区,将5种全球地表覆盖分类数据(包括美国地质调查局(USGS)、马里兰大学(UMD)和波士顿大学(BU)生成的3套数据和欧洲生成的2套数据)以及由TM影像生成的区域地表覆盖分类数据,分别与MODIS1km反射率资料结合,利用基于4尺度几何光学模型的LAI反演方法生成研究区的LAI。在1km和4km两种尺度上将反演的LAI与TM资料生成的LAI进行比较,评价地表覆盖分类数据对LAI反演结果的影响。结果表明,TM和欧洲太空局的GLOBCOVER地表覆盖分类数据用于反演LAI的结果较好,在1km尺度上,反演的LAI与统计模型估算的TMLAI相关的R2分别为0.44和0.40,在4km尺度上的R2分别为0.57和0.54;其次为波士顿大学的MODIS地表覆盖分类数据,据其反演的LAI与TMLAI相关的R2在1km和4km尺度上分别为0.38和0.51;而马里兰大学的UMD和欧洲的GLC2000地表覆盖分类数据会导致反演的LAI存在较大误差,据其反演的LAI与TMLAI之间的一致性较差,在1km和4km两种尺度上平均偏低20%左右;LAI的反演结果对聚集度系数具有强的敏感性。该研究表明,为了提高区域/全球LAI反演精度,需要有高质量的地表覆盖分类数据。  相似文献   

9.
<正>Land cover is a fundamental variable that links many facets of the natural environment and a key driver of global environmental change.Alterations in its status can have significant ramifications at local,regional and global levels.Hence,it is imperative to map land cover at a range of spatial and temporal scales with a view to understanding the inherent patterns for effective characterization,prediction and management of the potential environmental impacts.This paper presents the results of an effort to map land cover patterns in Kinangop division,Kenya,using geospatial tools.This is a geographic locality that has experienced rapid land use transformations since Kenya's independence culminating in uncontrolled land cover changes and loss of biodiversity.The changes in land use/cover constrain the natural resource base and presuppose availability of quantitative and spatially explicit land cover data for understanding the inherent patterns and facilitating specific and multi-purpose land use planning and management.As such,the study had two objectives viz.(i) mapping the spatial patterns of land cover in Kinangop using remote sensing and GIS and;(ii) evaluating the quality of the resultant land cover map.ASTER satellite imagery acquired in January 23,2007 was procured and field data gathered between September l0 and October 16,2007.The latter were used for training the maximum likelihood classifier and validating the resultant land cover map.The land cover classification yielded 5 classes,overall accuracy of 83.5%and kappa statistic of 0.79,which conforms to the acceptable standards of land cover mapping. This qualifies its application in environmental decision-making and manifests the utility of geospatial techniques in mapping land resources.  相似文献   

10.
利用卫星测高技术建立的全球海潮模型的精度和分辨率均有限,而高精度、高分辨率的近海区域潮汐观测资料,可用于改善和提高全球海潮模型在沿海地区的精度。利用中国东海和南海的近海海潮模型,对HAMTIDE11A.2011全球海潮模型中的中国近海区域进行了替换,并得到了修正前后模型计算的海潮负荷对不同区域GPS测站精密定位的影响。分析可得:(1)确认修正前后的全球海潮模型计算的海潮负荷对GPS测站精密定位的影响存在约5 mm的差异,并通过频谱分析得到修正后的模型在GPS精密定位中剔除海潮负荷影响的效果在半日、周日及半年周期处明显优于修正前的模型;(2)采用高精度近海模型进一步修正全球海潮模型,该成果对近海区域的GPS精密定位海潮负荷改正具有一定参考价值。  相似文献   

11.
曹海春 《北京测绘》2020,(5):661-665
本文探究单镜头多旋翼消费型无人机进行城区局部区域三维重建的方法。首先,介绍影像匹配、区域网联合平差以及多视密集匹配等倾斜无人机数据三维重建中的关键技术;然后,利用地面飞行控制系统与倾斜无人机结合采集多视影像数据,结合少量的人工干预,采用Context Capture软件快速构建建筑物三维模型;最后,对构建的三维模型进行精度分析,结果满足精度要求,提高了三维建模的效率,为城镇局部重点区域三维重建提供新的思路。  相似文献   

12.
城市道路的多特征多核SVM提取方法   总被引:1,自引:0,他引:1  
针对高分辨率遥感影像中城市道路提取的复杂性及SVM的分类性能,提出了一种城市道路的多特征多核SVM提取方法。首先利用FCM算法将原始影像粗分为建成区和非建成区两类,剔除非建成区;然后根据分水岭分割算法分割建成区并提取分割对象的光谱特征与空间特征,以全局核函数和局部核函数加权组合的方式构建多核SVM对建成区进行二次分类,去除建成区中的建筑物等非道路信息;最后利用数学形态学处理,获得最终的道路提取结果。试验结果表明:文中所提方法能够较精确地提取城市道路信息,分类精度高于单核SVM提取及其他对比方法。  相似文献   

13.
As countries become increasingly urbanized, understanding how urban areas are changing within the landscape becomes increasingly important. Urbanized areas are often the strongest indicators of human interaction with the environment, and understanding how urban areas develop through remotely sensed data allows for more sustainable practices. The Google Earth Engine (GEE) leverages cloud computing services to provide analysis capabilities on over 40 years of Landsat data. As a remote sensing platform, its ability to analyze global data rapidly lends itself to being an invaluable tool for studying the growth of urban areas. Here we present (i) An approach for the automated extraction of urban areas from Landsat imagery using GEE, validated using higher resolution images, (ii) a novel method of validation of the extracted urban extents using changes in the statistical performance of a high resolution population mapping method. Temporally distinct urban extractions were classified from the GEE catalog of Landsat 5 and 7 data over the Indonesian island of Java by using a Normalized Difference Spectral Vector (NDSV) method. Statistical evaluation of all of the tests was performed, and the value of population mapping methods in validating these urban extents was also examined. Results showed that the automated classification from GEE produced accurate urban extent maps, and that the integration of GEE-derived urban extents also improved the quality of the population mapping outputs.  相似文献   

14.
Abstract

The ability to map and monitor terrestrial carbon is important in tropical regions where land conversion is intense and tropical moist forests store much of Earth's terrestrial carbon. The release of terrestrial carbon in the form of carbon dioxide could alter local, regional, and global weather, and enhance the greenhouse effect. This study analyzed the ability of coarse‐resolution Advanced Very High Resolution Radiometer (AVHRR) remote sensor data to quantify carbon stored in the Guaporé / Itenez River Basin in Bolivia and Brazil. This area was selected because of the amount of land conversion that has occurred there relative to other areas of the Amazon Basin. A supervised vegetation classification map was created with training sites acquired through fieldwork done in the area in summer 1998. Image pixels were classified as tropical moist forest, degraded tropical moist forest, cerrado, grasslands, degraded savanna, or bare ground. Estimated above and below‐ground carbon values of the different land cover types were applied to each class to calculate total carbon values. It was concluded that data such as AVHRR may be used to calculate the amount of carbon in terrestrial ecosystems in regional scale areas.  相似文献   

15.
Satellite altimetry provides an ocean mean sea surface (MSS) map with global coverage and overall excellent precision. However, in some areas, like the Vanuatu archipelago, the coverage and resolution of this tool are not sufficient to correctly map the short scale undulations of the sea surface, due to numerous islands and to strong lithospheric and mantle heterogeneities. New applications such as seafloor geodesy may require local mean surface representation with improved resolution in specific areas. We used sea surface height collected with kinematic GPS during three different cruises in 2004, 2006 and 2007 to reconstruct a homogeneous sea surface map around Santo Island, Vanuatu. We assess the accuracy of this GPS-derived local sea surface to 6–19 cm and evaluate the quality of existing altimetry and gravity-derived MSSs on the Vanuatu archipelago. Observed short scale undulations are interpreted as due to local geodynamics.  相似文献   

16.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.  相似文献   

17.
Large area tree maps, important for environmental monitoring and natural resource management, are often based on medium resolution satellite imagery. These data have difficulty in detecting trees in fragmented woodlands, and have significant omission errors in modified agricultural areas. High resolution imagery can better detect these trees, however, as most high resolution imagery is not normalised it is difficult to automate a tree classification method over large areas. The method developed here used an existing medium resolution map derived from either Landsat or SPOT5 satellite imagery to guide the classification of the high resolution imagery. It selected a spatially-variable threshold on the green band, calculated based on the spatially-variable percentage of trees in the existing map of tree cover. The green band proved more consistent at classifying trees across different images than several common band combinations. The method was tested on 0.5 m resolution imagery from airborne digital sensor (ADS) imagery across New South Wales (NSW), Australia using both Landsat and SPOT5 derived tree maps to guide the threshold selection. Accuracy was assessed across 6 large image mosaics revealing a more accurate result when the more accurate tree map from SPOT5 imagery was used. The resulting maps achieved an overall accuracy with 95% confidence intervals of 93% (90–95%), while the overall accuracy of the previous SPOT5 tree map was 87% (86–89%). The method reduced omission errors by mapping more scattered trees, although it did increase commission errors caused by dark pixels from water, building shadows, topographic shadows, and some soils and crops. The method allows trees to be automatically mapped at 5 m resolution from high resolution imagery, provided a medium resolution tree map already exists.  相似文献   

18.
Detecting and Downscaling Wet Areas on Boreal Landscapes   总被引:1,自引:0,他引:1  
This letter presents an approach to classify wet areas from European Remote Sensing 2 (ERS-2) synthetic aperture radar (SAR)-, Landsat Thematic Mapper (TM)-, and Light Detection and Ranging (LiDAR)-derived terrain data and downscale the result from the coarse resolution of satellite images to finer resolutions needed for land managers. Using discrete wavelet transform (DWT) and support vector machines (SVM), the algorithm finds multiple relationships between the radar, optical, and terrain data and wet areas at different spatial scales. Decomposing and reconstructing processes are performed using a 2-D DWT (2D-DWT) and inverse 2D-DWT respectively. The underlying relationships between radar, optical, and terrain data and wet areas are learned by training an SVM at the coarse resolution of the wet-area map. The SVM is then applied on the predictors at a finer resolution to produce wet-area detailing images, which are needed to reconstruct a finer resolution wet-area map. The algorithm is applied to a boreal landscape in northern Alberta, Canada, characterized by many wet-area features including ephemeral and permanent streams and wetlands.  相似文献   

19.
The present study demonstrates the applicability of the Operational Linescan System (OLS) sensor in modelling urban growth at regional level. The nighttime OLS data provides an easy, inexpensive way to map urban areas at a regional scale, requiring a very small volume of data. A cellular automata (CA) model was developed for simulating urban growth in the Indo-Gangetic plain; using OLS data derived maps as input. In the proposed CA model, urban growth was expressed in terms of causative factors like economy, topography, accessibility and urban infrastructure. The model was calibrated and validated based on OLS data of year 2003 and 2008 respectively using spatial metrics measures and subsequently the urban growth was predicted for the year 2020. The model predicted high urban growth in North Western part of the study area, in south eastern part growth would be concentrated around two cities, Kolkata and Howrah. While in the middle portion of the study area, i.e., Jharkhand, Bihar and Eastern Uttar Pradesh, urban growth has been predicted in form of clusters, mostly around the present big cities. These results will not only provide an input to urban planning but can also be utilized in hydrological and ecological modelling which require an estimate of future built up areas especially at regional level.  相似文献   

20.
从重力探测技术和地球重力场的理论发展水平两方面综合评述了大地测量的主要研究成果和进展,介绍了空间大地测量技术的发展现状及应用,旨在对今后我国现代大地测量的发展提供一定的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号