首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The technique of predicting Potential Fishing Zone using satellite derived sea surface temperature and chlorophyll is becoming an important aspect for the fishermen. In the present study an attempt has been made to compare fish density/catch per unit effort in the areas predicted by Satellite imagery and available to fishermen via electronic display boards at the fish landing centers of Uttara Kannada district, Karnataka with those of non predicted areas. Direct and Indirect validation was done. Direct method means comparing the catch using fishing vessels simultaneously in the notified region with that of catch from non notified region. And in indirect method by comparing catch data from landing centers on notified days with that of non notified days. Direct validation off Karwar showed that catch was significantly higher in notified (PFZ) area with high densities as compared to non notified (non PFZ) regions. When comparisons of landing center data of Karwar, Tadadi and Bhatkal are done it is evident that in all the centers during the period under study, higher catches were observed on notified days than non notified days except in Bhatkal centre in 2009–10. There by validating the accuracy of PFZ predictions and economic gains to fishermen.  相似文献   

2.
Tuna fishery resources are currently under exploited. The resource potential of tunas in the Indian Exclusive Economic Zone (EEZ) beyond 50 m depths is around 2.09 lakh tonnes as estimated by Fishery Survey of India. The distribution and availability of the tuna are governed by environmental factors like temperature, thermocline depth, availability of prey, visibility etc. Remote sensing provides synoptic information on productivity in terms of chlorophyll and Sea Surface Temperature (SST). In the present paper, satellite remote sensing data from Indian Remote Sensing Satellite IRS- P4 Ocean Colour Monitor (OCM) sensor for chlorophyll-a and diffuse attenuation coefficient (K) and National Oceanic and Atmospheric Administration (NOAA) - Advanced Very High Resolution Radiometer (AVHRR) sensor data for sea surface temperature were analysed and correlated within situ catch data of oceanic tunas, Skipjack(Katsuwonus pelamis) and Yellowfin tuna(Thunnus albacares), off Maharashtra coast. Higher catches were found to be associated with moderate to good primary productivity and in the vicinity of thermal fronts. Relationship between Hooking rate and SST has shown that SST of 28–30°C range is optimum for skipjack and 28–31°C for yellowfin tuna. Besides satellite derived chlorophyll and SST for identification of potential tuna fishing zones, role of diffuse attenuation coefficient (K) for visibility factor is also discussed.  相似文献   

3.
Potential fishing zones (PFZ’s) are those regions where the fishes aggregate due to an abundance of food and they are demarcated by tracing those regions in the ocean, where a sharp sea surface temperature (SST) gradient along with optimal chlorophyll (Chl) concentration co-exists at a given time. In this regard, Indian National Centre for Ocean Information Services (INCOIS) disseminates the daily PFZ forecasts in Bay of Bengal and Arabian Sea to aid the fishermen community. The present study is an endeavor to develop a local spatial model derived Potential Fishing Zone (PFZ) in the northern Bay of Bengal (nBoB) lying adjacent to the West Bengal coast. Satellite derived SST and chlorophyll data obtained for two consecutive winter seasons of 2010–11 and 2011–12 were used to generate line density (LD) raster. Shapefiles of INCOIS predicted PFZs were overlaid on these LD raster to extract the corresponding pixel values. Histogram ranges of the extracted pixels were fixed and same values lying in the LD raster of both SST and chlorophyll other than INCOIS PFZs were detected by a spatial model in ERDAS. The PFZs thus derived were validated against the ground fish catch data and it was observed that good fish catch was seen in the model derived additional PFZs also. The catch per unit effort (CPUE) values was found to be very close to that of the CPUE value of PFZ advisories of INCOIS. However, the CPUE in the non PFZ areas were significantly lower than the former two categories.  相似文献   

4.
This paper demonstrates the use of moderate resolution imaging spectro-radiometer (MODIS) data for fish forecasting mapping of seasonal spatial distribution of sea surface salinity (SSS), temperature (SST) and chlorophyll-a in the ocean waters off the coast of Semporna, Malaysia. Multi-linear regression analysis was performed to estimate SSS and the Brown and Minnet algorithm was used for the SST. The extracted parameters were validated using in situ measurement taken with Hydro-Lab equipment. The extracted parameters from MODIS images reveal the signature values which establish the relationships between these parameters, and thus delineating the potential fish zonation (PFZ) map. These developed models will help for accurate monitoring of large coverage areas at low cost and within short period of time. Furthermore, such models will allow the prediction of the total fish catch in different seasons, thus contributing to fish industry management and marketing. This research recommends the use of PFZ map for mass scale fish harvesting in short time for larger areas. Finally, the research has developed a potential fish zone model amalgamating all the above parameters. The PFZ mapping was carried out off the coast of Semporna, Sabah as there were sufficient fish catch data for accuracy assessment. The R was computed as 0.93 and the higher fish catch areas have coincided very well with the higher PFZ values, meaning the tool is ready for use for operational near real-time fish forecasting.  相似文献   

5.
 Global mean sea surface heights (SSHs) and gravity anomalies on a 2×2 grid were determined from Seasat, Geosat (Exact Repeat Mission and Geodetic Mission), ERS-1 (1.5-year mean of 35-day, and GM), TOPEX/POSEIDON (T/P) (5.6-year mean) and ERS-2 (2-year mean) altimeter data over the region 0–360 longitude and –80–80 latitude. To reduce ocean variabilities and data noises, SSHs from non-repeat missions were filtered by Gaussian filters of various wavelengths. A Levitus oceanic dynamic topography was subtracted from the altimeter-derived SSHs, and the resulting heights were used to compute along-track deflection of the vertical (DOV). Geoidal heights and gravity anomalies were then computed from DOV using the deflection-geoid and inverse Vening Meinesz formulae. The Levitus oceanic dynamic topography was added back to the geoidal heights to obtain a preliminary sea surface grid. The difference between the T/P mean sea surface and the preliminary sea surface was computed on a grid by a minimum curvature method and then was added to the preliminary grid. The comparison of the NCTU01 mean sea surface height (MSSH) with the T/P and the ERS-1 MSSH result in overall root-mean-square (RMS) differences of 5.0 and 3.1 cm in SSH, respectively, and 7.1 and 3.2 μrad in SSH gradient, respectively. The RMS differences between the predicted and shipborne gravity anomalies range from 3.0 to 13.4 mGal in 12 areas of the world's oceans. Received: 26 September 2001 / Accepted: 3 April 2002 Correspondence to: C. Hwang Acknowledgements. This research is partly supported by the National Science Council of ROC, under grants NSC89-2611-M-009-003-OP2 and NSC89-2211-E-009-095. This is a contribution to the IAG Special Study Group 3.186. The Geosat and ERS1/2 data are from NOAA and CERSAT/France, respectively. The T/P data were provided by AVISO. The CLS and GSFC00 MSS models were kindly provided by NASA/GSFC and CLS, respectively. Drs. Levitus, Monterey, and Boyer are thanked for providing the SST model. Dr. T. Gruber and two anonymous reviewers provided very detailed reviews that improved the quality of this paper.  相似文献   

6.
星地多源数据的区域土壤有机质数字制图   总被引:4,自引:0,他引:4  
周银  刘丽雅  卢艳丽  马自强  夏芳  史舟 《遥感学报》2015,19(6):998-1006
土壤有机质(SOM)是全球碳循环、土壤养分的重要组成部分,精确估算土壤有机质含量具有重要意义。本文以中国东北—华北平原为研究区,收集了1078个土壤样本,以遥感数据(MODIS,TRMM和STRM数据)与土壤地面光谱数据为预测因子,运用基于树形结构的数据挖掘技术构建土壤有机质-环境预测因子模型进行数字土壤制图。通过不同建模样本数建模精度比较,选择300个样本数时的模型为最优模型。建模结果表明土壤光谱和气候因子是研究区SOM变异的主控因子,生物因子次之,而地形因子影响最小。预测结果经检验,RMSE为7.25,R2为0.69,RPD为1.53制图结果与基于第二次全国土壤普查数据的土壤有机质地图具有相似的分布规律,呈现SOM自东北向西南递减的趋势。通过比较分析发现,经过20年左右的土地开发与利用,研究区低SOM和高SOM含量土壤面积减少,而中等SOM含量土壤面积增加。  相似文献   

7.
Seagrass meadows are at increasing risk of thermal stress and recent work has shown that water temperature around seagrass meadows could be used as an indicator for seagrass condition. Satellite thermal data have not been linked to the thermal properties of seagrass meadows. This work assessed the covariation between 20 in situ average daily temperature logger measurement sites in tropical seagrass meadows and satellite derived daytime SST (sea surface temperature) from the daytime MODIS and Landsat sensors along the Great Barrier Reef coast in Australia. Statistically significant (R2?=?0.787–0.939) positive covariations were found between in situ seagrass logger temperatures and MODIS SST temperature and Landsat sensor temperatures at all sites along the reef. The MODIS SST were consistently higher than in situ temperature at the majority of the sites, possibly due to the sensor’s larger pixel size and location offset from field sites. Landsat thermal data were lower than field-measured SST, due to differences in measurement scales and times. When refined significantly and tested over larger areas, this approach could be used to monitor seagrass health over large (106?km2) areas in a similar manner to using satellite SST for predicting thermal stress for corals.  相似文献   

8.
FY-3C微波成像仪海面温度产品算法及精度检验   总被引:2,自引:2,他引:0  
海洋表面温度(SST)是海洋学和气候学一个十分重要的物理因子,而卫星被动微波遥感能够穿透云层,实现全天候、大范围观测,因此利用中国FY-3C微波成像仪(MWRI)反演SST具有重要意义。FY-3C MWRI SST产品采用统计算法,首先利用MWRI降水和海冰产品剔除含降水和海冰的像元,之后选择时空间隔0.2 h和0.2°离海岸100 km以外的FY-3C MWRI观测亮温与浮标观测值进行匹配,再将全球在空间上分为4个纬度带,时间上分为12个月,并分升轨和降轨,分别建立浮标海温观测结果和MWRI亮温之间的统计关系,实现对SST的估算。将|估算海温-30年月平均海温|≥2.5 K的像元标识为51,发现这些像元基本分布在陆地边缘地区及大风速地区,剔除标识为51的像元后的精度验证结果表明:与全球浮标资料相比,FY-3C MWRI SST轨道产品升轨精度为–0.02±1.22 K,降轨精度为–0.15±1.28 K;与全球分析场日平均海温OISST相比,FY-3C MWRI SST日产品升轨精度为0.00±1.03 K,降轨精度为–0.09±1.08 K。微波辐射计的性能及其定位定标精度、上游卫星产品(降水检测和海冰检测)的精度、陆地的干扰及高风速对微波信号的影响均会造成SST估算误差,如何改进算法中风速大于12 m/s时的估算精度是下一步的工作重点。  相似文献   

9.
Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI maps in Norway.  相似文献   

10.
Broadband field spectra were assessed to discriminate invasive saltcedar (Tamarix spp.) trees exhibiting feeding damage caused by the saltcedar leaf beetle (Diorhadba spp.) from other land cover types. Data were collected at two study sites near Presidio, Texas in 2010 and 2011. Spectral bands evaluated were coastal blue (400–450?nm), blue (450–510?nm), green (510–580?nm), yellow (585–625?nm), red (630–690?nm), red-edge (705–745?nm), and near-infrared (770–895, 860–1040?nm). Data were evaluated with analysis of variance and Scheffe’s multiple comparison test (α?=?0.05). The red band generally separated severely damaged saltcedar trees from other land cover features. Near-infrared bands separated defoliated saltcedar trees. Broadband spectra has potential for distinguishing saltcedar trees exhibiting feeding damage caused by the saltcedar leaf beetle from other associated features, thus supporting future explorations of airborne and satellite-borne multispectral systems to monitor biological control of saltcedar within complex landscapes.  相似文献   

11.
以MODIS红外谱段数据为基准,对高光谱红外谱段数据进行辐射交叉定标试验,同时运用高光谱红外谱段数据对近海海表水温进行了评估试验.交叉定标数据选取2012年—2013年冬、夏两季各一幅代表性图像,MODIS与高光谱红外谱段数据成像时间均为同一天白天.实验结果表明,天宫一号高光谱红外谱段数据与MODIS数据具有极好的相关性,相关系数R大于0.95;在此基础上建立了基于MODIS 32波段的辐亮度线性回归校正方程,并用于海表温度反演、检测自然与人工扰动造成的海表温度异常.基于校正数据反演的中国南北典型冬、夏代表性季节的海表温度与常识较为一致.由此表明,基于MODIS交叉定标的天宫一号数据可用于实际的业务化定量评估;同时,由于空间分辨率较高,天宫一号高光谱红外谱段数据在海水精细空间动态变化检测上表现出极好的性能.  相似文献   

12.
In this study we assess the feasibility of remotely measuring canopy biochemistry, and thus the potential for conducting large-scale mapping of habitat quality. A number of studies have found nutrient composition of eucalypt foliage to be a major determinant of the distribution of folivorous marsupials. More recently it has been demonstrated that a specific group of secondary plant chemicals, the diformylphloroglucinols (DFPs), are the most important feeding deterrents, and are thus vital determinants of habitat quality. We report on the use of laboratory spectroscopy to attempt to identify one such DFP, sideroxylonal-A, in the foliage of Eucalyptus melliodora, one of the few eucalypt species browsed by folivorous marsupials. Reflectance spectra were obtained for freeze-dried, ground leaves using near infrared spectroscopy (NIRS) and for both oven-dried and fresh whole leaves using a laboratory-based (FieldSpec) spectroradiometer. Modified partial least squares (MPLS) regression was used to develop calibration equations for sideroxylonal-A concentration based on the reflectance spectra transformed as both the first and second difference of absorbance (Log 1/R). The predictive ability of the calibration equations was assessed using the standard error of calibration statistic (SECV). Coefficients of determination (r2) were highest for the ground leaf spectra (0.98), followed by the fresh leaf and dry leaf spectra (0.94 and 0.87, respectively). When applied to independent validation sub-sets, sideroxylonal-A was most accurately predicted from the ground leaf spectra (r2 = 0.94), followed by the dry leaf and fresh leaf spectra (0.72 and 0.53, respectively). Two spectral regions, centred on 674 nm and 1394 nm, were found to be highly correlated with sideroxylonal-A concentration for each of the three spectral data sets studied. Results from this study suggest that calibration equations derived from modified partial least squares regression may be used to predict sideroxylonal-A concentration, and hence leaf palatability, of Eucalyptus melliodora trees, thereby indicating that the remote estimation of habitat quality of eucalypt forests for marsupial folivores is feasible.  相似文献   

13.
Forest canopy cover (CC) and above-ground biomass (AGB) are important ecological indicators for forest monitoring and geoscience applications. This study aimed to estimate temperate forest CC and AGB by integrating airborne LiDAR data with wall-to-wall space-borne SPOT-6 data through geostatistical modeling. Our study involved the following approach: (1) reference maps of CC and AGB were derived from wall-to-wall LiDAR data and calibrated by field measurements; (2) twelve discrete LiDAR flights were simulated by assuming that LiDAR data were only available beneath these flights; (3) training/testing samples of CC and AGB were extracted from the reference maps inside and outside the simulated flights using stratified random sampling; (4) The simple linear regression, ordinary kriging and regression kriging model were used to extend the sparsely sampled CC/AGB data to the entire study area by incorporating a selection of SPOT-6 variables, including vegetation indices and texture variables. The regression kriging model was superior at estimating and mapping the spatial distribution of CC and AGB, as it featured the lowest mean absolute error (MAE; 11.295% and 18.929 t/ha for CC and AGB, respectively) and root mean squared error (RMSE; 17.361% and 21.351 t/ha for CC and AGB, respectively). The predicted and reference values of both CC and AGB were highly correlated for the entire study area based on the estimation histograms and error maps. Finally, we concluded that the regression kriging model was superior and more effective at estimating LiDAR-derived CC and AGB values using the spatially-reduced samples and the SPOT-6 variables. The presented modeling workflow will greatly facilitate future forest growth monitoring and carbon stock assessments for large areas of temperate forest in northeast China. It also provides guidance on how to take full advantage of future sparsely collected LiDAR data in cases where wall-to-wall LiDAR coverage is not available from the perspective of geostatistics.  相似文献   

14.
Since coastal waters are one of the most vulnerable marine systems to environmental pollution, it is very important to operationally monitor coastal water quality. This study attempts to estimate two major water quality indicators, chlorophyll-a (chl-a) and suspended particulate matter (SPM) concentrations, in coastal environments on the west coast of South Korea using Geostationary Ocean Color Imager (GOCI) satellite data. Three machine learning approaches including random forest, Cubist, and support vector regression (SVR) were evaluated for coastal water quality estimation. In situ measurements (63 samples) collected during four days in 2011 and 2012 were used as reference data. Due to the limited number of samples, leave-one-out cross validation (CV) was used to assess the performance of the water quality estimation models. Results show that SVR outperformed the other two machine learning approaches, yielding calibration R2 of 0.91 and CV root-mean-squared-error (RMSE) of 1.74 mg/m3 (40.7%) for chl-a, and calibration R2 of 0.98 and CV RMSE of 11.42 g/m3 (63.1%) for SPM when using GOCI-derived radiance data. Relative importance of the predictor variables was examined. When GOCI-derived radiance data were used, the ratio of band 2 to band 4 and bands 6 and 5 were the most influential input variables in predicting chl-a and SPM concentrations, respectively. Hourly available GOCI images were useful to discuss spatiotemporal distributions of the water quality parameters with tidal phases in the west coast of Korea.  相似文献   

15.
ABSTRACT

Monitoring of destructive invasive weeds such as those from the genus Striga requires accurate, near real-time predictions and integrated assessment techniques to enable better surveillance and consistent assessment initiatives. Thus, in this study, we predicted the potential ecological niche of Striga (Striga asiatica) weed in Zimbabwe, to identify and understand its propagation and map potentially vulnerable cropping areas. Vegetation phenology from remote sensing, bioclimatic and other environmental variables (i.e. cropping system, edaphic, land surface temperature, and terrain) were used as predictors. Six machine learning modeling techniques and the ensemble model were evaluated on their suitability to predict current and future Striga weed distributional patterns. The mentioned predictors (n = 40) were integrated into six models with “presence-only” training and evaluation data, collected in Zimbabwe over the period between the 12th and 28th of March 2018. The area under the curve (AUC) and true skill statistic (TSS) were used to measure the performance of the Striga modeling framework. The results showed that the ensemble model had the strongest Striga occurrence predictive power (AUC = 0.98; TSS = 0.93) when compared to the other modeling algorithms. Temperature seasonality (Bio4), the maximum temperature of the warmest month (Bio5) and precipitation seasonality (Bio15) were determined to be the most dominant bioclimatic variables influencing Striga occurrence. “Start of the season” and “season minimum value” of the “Enhanced Vegetation Index base value” were the most relevant remote sensing-based variables. Based on projected climate change scenarios, the study showed that up to 2050, the suitable area for Striga propagation will increase by ~ 0.73% in Zimbabwe. The present work demonstrated the importance of integrating multi-source data in predicting possible crop production restraints due to weed propagation. The results can enhance national preparedness and management strategies, specifically, if the current and future risk areas can be identified for early intervention and containment  相似文献   

16.
最优插值全球海表温度数据格式分析及显示方法   总被引:2,自引:0,他引:2  
介绍了最优插值全球海表温度数据;分析了NetCDF的特点,实现了利用ArcGIS和Matlab读取并显示NetCDF海表温度数据的方法。  相似文献   

17.
Sea surface temperature (SST) retrieved from Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting environmental satellites were validated in the East/Japan Sea (EJS) using surface drifter measurements as ground truths from 2005 to 2010. Overall, the root-mean-square (rms) errors of multichannel SSTs (MCSSTs) and non-linear SSTs (NLSSTs) using global SST coefficients were approximately 0.85°C and 0.80°C, respectively. An analysis of the SST errors (satellite – drifter) revealed a dependence on the amount of atmospheric moisture. In addition, satellite-derived SSTs tended to be related to wind speeds, particularly during the night. The SST errors also demonstrated diurnal variations with relatively higher rms from 0.80°C to 1.00°C during the night than the day, with a small rms of about 0.50°C. Bias also exhibited reasonable diurnal differences, showing small biases during the daytime. Although a satellite zenith angle has been considered in the global SST coefficients, its effect on the SST errors still remained in case of the EJS. Given the diverse use of SST data, the continuous validation and understanding of the characteristic errors of satellite SSTs should be conducted based on extensive in-situ temperature measurements in the global ocean as well as local seas.  相似文献   

18.
A new individual tree-based algorithm for determining forest biomass using small footprint LiDAR data was developed and tested. This algorithm combines computer vision and optimization techniques to become the first training data-based algorithm specifically designed for processing forest LiDAR data. The computer vision portion of the algorithm uses generic properties of trees in small footprint LiDAR canopy height models (CHMs) to locate trees and find their crown boundaries and heights. The ways in which these generic properties are used for a specific scene and image type is dependent on 11 parameters, nine of which are set using training data and the Nelder–Mead simplex optimization procedure. Training data consist of small sections of the LiDAR data and corresponding ground data. After training, the biomass present in areas without ground measurements is determined by developing a regression equation between properties derived from the LiDAR data of the training stands and biomass, and then applying the equation to the new areas. A first test of this technique was performed using 25 plots (radius = 15 m) in a loblolly pine plantation in central Virginia, USA (37.42N, 78.68W) that was not intensively managed, together with corresponding data from a LiDAR canopy height model (resolution = 0.5 m). Results show correlations (r) between actual and predicted aboveground biomass ranging between 0.59 and 0.82, and RMSEs between 13.6 and 140.4 t/ha depending on the selection of training and testing plots, and the minimum diameter at breast height (7 or 10 cm) of trees included in the biomass estimate. Correlations between LiDAR-derived plot density estimates were low (0.22 ≤ r ≤ 0.56) but generally significant (at a 95% confidence level in most cases, based on a one tailed test), suggesting that the program is able to properly identify trees. Based on the results it is concluded that the validation of the first training data-based algorithm for determining forest biomass using small footprint LiDAR data was a success, and future refinement and testing are merited.  相似文献   

19.
郑晓莉  董庆  樊星 《遥感学报》2020,24(1):85-96
本文利用AVISO卫星高度计资料识别并追踪了北太平洋2007年—2012年的中尺度涡,并利用OSTIA的海表温度SST(Sea Surface Temperature)资料与MODIS的叶绿素a浓度(Chl-a)资料,研究了北太平洋2007年—2012年中尺度涡SST和Chl-a浓度的时空分布特征,并分析北太平洋典型中尺度涡SST与Chl-a浓度的变化特征,主要结论如下:本文共识别出992个中尺度涡,其中442个气旋涡,550个反气旋涡。中尺度涡SST时空分布特征为:气旋涡温度强度(ICE)月变化特征比反气旋涡温度强度(IAE)更强。ICE年际变化显著,IAE则不明显。温度强度较强的气旋涡和反气旋涡集中分布在黑潮延伸区。中尺度涡Chl-a浓度时空分布特征如下:气旋涡和反气旋涡Chl-a浓度月变化特征明显,且二者的变化趋势一致;年际变化则均不明显。Chl-a浓度值高的中尺度涡主要分布在高纬海域。中尺度涡SST与海洋动力参数(振幅、涡度和涡动能(EKE))的相互关系为:反气旋涡SST与振幅的相关性亦正亦负,且在空间上均匀分布。气旋涡SST与振幅的负相关系数主要分布在黑潮延伸区。正相关性强的反气旋涡多于气旋涡。反气旋涡SST与涡度的相关性亦正亦负,气旋涡SST与涡度呈负相关。反气旋涡SST与EKE的相关性亦正亦负;气旋涡的相关性为正。中尺度涡Chl-a浓度与海洋动力参数的相互关系为:反气旋涡Chl-a浓度与振幅的相关性为正,且在空间上均匀分布;气旋涡在黑潮延伸区与阿拉斯加湾呈正相关。反气旋涡和气旋涡Chl-a浓度与涡度均呈正相关。反气旋涡Chl-a浓度与EKE呈正相关;气旋涡Chl-a浓度与EKE相关性亦正亦负。  相似文献   

20.
In satellite data analysis, one big advantage of analytical orbit integration, which cannot be overestimated, is missed in the numerical integration approach: spectral analysis or the lumped coefficient concept may be used not only to design efficient algorithms but overall for much better insight into the force-field determination problem. The lumped coefficient concept, considered from a practical point of view, consists of the separation of the observation equation matrix A=BT into the product of two matrices. The matrix T is a very sparse matrix separating into small block-diagonal matrices connecting the harmonic coefficients with the lumped coefficients. The lumped coefficients are nothing other than the amplitudes of trigonometric functions depending on three angular orbital variables; therefore, the matrix N=B T B will become for a sufficient length of a data set a diagonal dominant matrix, in the case of an unlimited data string length a strictly diagonal one. Using an analytical solution of high order, the non-linear observation equations for low–low SST range data can be transformed into a form to allow the application of the lumped concept. They are presented here for a second-order solution together with an outline of how to proceed with data analysis in the spectral domain in such a case. The dynamic model presented here provides not only a practical algorithm for the parameter determination but also a simple method for an investigation of some fundamental questions, such as the determination of the range of the subset of geopotential coefficients which can be properly determined by means of SST techniques or the definition of an optimal orbital configuration for particular SST missions. Numerical results have already been obtained and will be published elsewhere. Received: 15 January 1999 / Accepted: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号