首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
The leaf area index (LAI) of plant canopies is an important structural parameter that controls energy, water, and gas exchanges of plant ecosystems. Remote sensing techniques may offer an alternative for measuring and mapping forest LAI at a landscape scale. Given the characteristics of high spatial/spectral resolution of the WorldView-2 (WV2) sensor, it is of significance that the textural information extracted from WV2 multispectral (MS) bands will be first time used in estimating and mapping forest LAI. In this study, LAI mapping accuracies would be compared from (a) spatial resolutions between 2-m WV2 MS data and 30-m Landsat TM imagery, (b) the nature of variables between spectrum-based features and texture-based features, and (c) sensors between TM and WV2. Therefore spectral/textural features (SFs) were first selected and tested; then a canonical correlation analysis was performed with different data sets of SFs and LAI measurement; and finally linear regression models were used to predict and map forest LAI with canonical variables calculated from image data. The experimental results demonstrate that for estimating and mapping forest LAI, (i) using high resolution data (WV2) is better than using relatively low resolution data (TM); (ii) extracted from the same WV2 data, texture-based features have higher capability than that of spectrum-based features; (iii) a combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping forest LAI than their either one separately; and (iv) WV2 sensor outperforms TM sensor significantly. However, we need to address the possible overfitting phenomenon that might be brought in by using more input variables to develop models. In addition, the experimental results also indicate that the red-edge band in WV2 was the worst on estimating LAI among WV2 MS bands and the WV2 MS bands in the visible range had a much higher correlation with ground measured LAI than that red-edge and NIR bands did.  相似文献   

2.
主要研究利用高分辨率WorldView-2卫星影像和双介质立体摄影测量方法进行浅海地形测绘的可行性,同时解决双介质立体摄影测量精定位算法(即折射改正算法)适用性差的问题。首先依据通用的双介质物像几何关系,提出了一种普适的双介质立体摄影测量折射改正算法;然后以海南省三沙市甘泉岛、珊瑚岛周围浅海区域为试验场,利用两个地区的WorldView-2立体影像,运用双介质立体摄影测量方法进行了浅海地形测绘试验。试验成功提取到了两个地区浅海海底的数字高程模型(DEM)。其中,甘泉岛地区的浅海DEM精度达到2.08 m(剔除其中的高程异常点后的结果)。研究表明:提出的折射改正算法,无论"空中同名光线延长线是否相交"都是适用的,且能改善浅海地形测绘精度。在水体清澈、无海浪情况下,利用相应的WorldView-2立体影像和双介质立体摄影测量方法进行浅海地形测绘是可行的。  相似文献   

3.
In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR  RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx  Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2’s ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.  相似文献   

4.
We developed a classification workflow for boreal forest habitat type mapping. In object-based image analysis framework, Fractal Net Evolution Approach segmentation was combined with random forest classification. High-resolution WorldView-2 imagery was coupled with ALS based canopy height model and digital terrain model. We calculated several features (e.g. spectral, textural and topographic) per image object from the used datasets. We tested different feature set alternatives; a classification accuracy of 78.0% was obtained when all features were used. The highest classification accuracy (79.1%) was obtained when the amount of features was reduced from the initial 328 to the 100 most important using Boruta feature selection algorithm and when ancillary soil and land-use GIS-datasets were used. Although Boruta could rank the importance of features, it could not separate unimportant features from the important ones. Classification accuracy was bit lower (78.7%) when the classification was performed separately on two areas: the areas above and below 1 m vertical distance from the nearest stream. The data split, however, improved the classification accuracy of mire habitat types and streamside habitats, probably because their proportion in the below 1 m data was higher than in the other datasets. It was found that several types of data are needed to get the highest classification accuracy whereas omitting some feature groups reduced the classification accuracy. A major habitat type in the study area was mesic forests in different successional stages. It was found that the inner heterogeneity of different mesic forest age groups was large and other habitat types were often inside this heterogeneity.  相似文献   

5.
ABSTRACT

In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a ‘bridge’. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R2?=?0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号