首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.  相似文献   

2.
现有像元二分模型MODIS植被覆盖度模型因其形式简单、适用性较强的特点被广泛应用于区域植被覆盖度(FVC)的估算。然而,研究表明在沙漠和低植被覆盖的西部干旱区,从250 m的影像上很难精准地获取NDVIveg(全植被覆盖植被指数)和NDVIsoil(全裸土区植被指数)参数。利用常用的直方图累计法获取模型所需参数NDVIveg和NDVIsoil,估算结果存在普遍高估现象。为此,本文首先引入同期获取的GF-2号卫星数据,从GF-2号影像上提取植被覆盖像元;然后,利用Pixel Aggregate方法重采样至250 m分辨率,获取250 m空间分辨率下纯植被和纯裸土像元;最后,将纯植被和纯裸土像元各自空间位置相对应的MODIS NDVI数据最大值作为模型所需NDVIveg和NDVIsoil参数,实现研究区内植被覆盖度的估算。试验通过与线性回归法、多项式回归法和直方图累计像元二分模型法估算结果进行精度对比,结果表明:利用GF-2影像辅助的像元二分模型,精准地获取了低植被覆盖区NDVIveg和NDVIsoil模型参数,提高了干旱区植被覆盖度的估算精度,并有效地抑制了受稀疏植被影响NDVI在干旱区普遍偏高问题导致的FVC高估的现象。  相似文献   

3.
中国北方地区植被覆盖度遥感估算及其变化分析   总被引:6,自引:0,他引:6  
为了分析中国北方地区2000年之后植被覆盖度的时空分布及其变化,利用MODIS光谱反射率数据计算归一化植被指数,采用像元二分模型对中国北方地区2000—2012年植被覆盖度进行定量估算,分析研究区13 a间植被覆盖度的时空变化特征。研究结果表明:植被覆盖度年内变化特征体现在最大植被覆盖度一般出现在7和8月份,与中国北方地区植被的生长季相一致;整个中国北方地区年最大植被覆盖度呈现缓慢增长的趋势,其增长速率为每年0.2%;年最大植被覆盖度变化的空间分布具有较大差异,其中东北、华北和黄土高原等三北防护林工程建设区的年最大植被覆盖度有较明显的增长。  相似文献   

4.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

5.
Quantitative estimations of the fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS) are critical for soil wind erosion, desertification, grassland grazing, grassland fire, and grassland carbon storage studies. At present, regional and large-scale fPV, fNPV and fBS estimations have been carried out in many areas. However, few studies have used moderate resolution imaging spectroradiometer (MODIS) data to perform large-scale, long-term fPV, fNPV and fBS estimations in the Xilingol grassland of China. The objective of this study was to quantitatively estimate the time series of fPV, fNPV and fBS in the typical grassland region of Xilingol from MODIS image data. Field measurement spectral and coverage data from May and September 2017 were combined with the 8-day composite product (MOD09A1) acquired during 2017. We established an empirical linear model of different non-photosynthetic vegetation indices (NPVIs) and fNPV based on the sample scale. The linear correlation between the dead fuel index (DFI) and fNPV was best (R2 = 0.60, RMSE = 0.15). A normalized difference vegetation index (NDVI)-DFI model based on MODIS data was proposed to accurately estimate the fPV, fNPV and fBS (estimation accuracies of 44%, 71%, and 74%, respectively) in the typical grasslands of Xilingol in China. The fPV, fNPV and fBS values for the typical grassland time series estimated by the NDVI-DFI model were consistent with the phenological characteristics of the grassland vegetation. The results show that the application of the NDVI-DFI model to the Xilingol grassland is reasonable and appropriate, and it is of great significance to the monitoring of soil wind erosion and fires in grasslands.  相似文献   

6.
针对传统植被覆盖度估算方法只能估算高密度覆盖的绿色光合植被的问题,该文提出了一种可进行绿色光合植被、非绿色光合植被和裸地覆盖度估算的方法,选取博尔塔拉蒙古自治州2010年和2016年的LandsatTM/OLI影像,通过构建NDVI-DFI特征空间提取端元特征值,运用像元三分模型估算,并与像元二分模型估算结果和实地采样估算结果对比。结果表明:像元三分模型估算与实际情况相符,且精度较好。2016年博州地区植被覆盖度较2010年增长显著,生态环境得到明显改善。像元三分模型能够较好地估算光合/非光合植被覆盖度,提高遥感获取植被信息的能力,为科学评估生态环境质量提供参考。  相似文献   

7.
ABSTRACT

Fractional green vegetation cover (FVC) is a useful indicator for monitoring grassland status. Satellite imagery with coarse spatial but high temporal resolutions has been preferred to monitor seasonal and inter-annual FVC dynamics in wide geographic area such as Mongolian steppe. However, the coarse spatial resolution can cause a certain uncertainty in the satellite-based FVC estimation, which calls attention to develop a robust statistical test for the relationship between field FVC and satellite-derived vegetation indices. In the arid and semi-arid Mongolian steppe, nadir pointing digital camera images (DCI) were collected and used to produce a FVC dataset to support the evaluation of satellite-based FVC retrievals. An optimal DCI processing method was determined with respect to three color spaces (RGB, HIS, L*a*b*) and six green pixel classification algorithms, from which a country-wide dataset of DCI-FVC was produced and used for evaluating the accuracy of satellite-based FVC estimates from MODIS vegetation indices. We applied three empirical and three semi-empirical MODIS-FVC retrieval models. DCI data were collected from 96 sites across the Mongolian steppe from 2012 to 2014. The histogram algorithm using the hue (H) value of the HIS color space was the optimal DCI method (r2 = 0.94, percent root-mean-square-error (RMSE) = 7.1%). For MODIS-FVC retrievals, semi-empirical Baret model was the best-performing model with the highest r2 (0.69) and the lowest RMSE (49.7%), while the lowest MB (+1.1%) was found for the regression model with normalized difference vegetation index (NDVI). The high RMSE (>50% or so) is an issue requiring further enhancement of satellite-based FVC retrievals accounting for key plant and soil parameters relevant to the Mongolian steppe and for scale mismatch between sampling and MODIS data.  相似文献   

8.
基于蓝噪声理论的遥感图像森林植被纹理测量   总被引:1,自引:0,他引:1  
遥感图像分割中森林植被是重要的一类目标,有效确定森林植被的纹理尺度是纹理分割的重要问题。提出一种用蓝噪声理论描述遥感图像森林植被纹理特征的方法,是一种新的植被纹理刻画和纹理尺度计算方法。研究尺度与植被纹理形态的对应关系,对于选定的探测区域,迭代寻找蓝噪声特征。迭代过程包含通过几何变换缩小区域的尺寸,用快速傅里叶变换获取区域的频谱响应,从频谱响应中提取蓝噪声特征。对于具有蓝噪声特征的区域,计算森林植被纹理的灰度分布,根据当前区域尺寸计算纹理的尺寸。实验表明,森林植被纹理单元的尺度和灰度分布测量结果准确,为进一步纹理分割提供了可靠的基础。  相似文献   

9.
南方丘陵区植被覆盖度遥感估算的地形效应评估   总被引:3,自引:0,他引:3  
植被覆盖变化是生态环境领域的核心研究内容之一,但其估算精度常受到地形效应、土壤背景、大气效应等各种因素影响。以Landsat 8 OLI为遥感数据源,基于像元二分模型,分别利用归一化差值植被指数(NDVI)、经Cosine-C校正的归一化差值植被指数(NDVI)和归一化差值山地植被指数(NDMVI)建立植被覆盖度估算模型,以评估南方丘陵区植被覆盖度的地形效应。结果表明,3种植被覆盖度估算模型均能削弱地形效应,但消除或抑制地形效应影响的能力不同。比较而言,基于NDMVI指数构建的植被覆盖度估算模型的地形效应最小,更适合地形复杂区域的植被覆盖度遥感估算;基于Cosine-C校正的NDVI植被指数构建的植被覆盖度估算模型的地形效应次之,但存在一定的过度校正现象;基于NDVI植被指数构建的植被覆盖度估算模型的地形效应最大,尤其当坡度≥10°时,阴坡植被覆盖度比阳坡明显偏低。  相似文献   

10.
杜英坤  燕琴  童李霞  王晓波 《测绘科学》2016,41(9):87-90,169
针对利用像元二分模型估算植被覆盖度的精度不高的问题,该文基于OSAVI,提出了选定模型参数(OSAVIs和OSAVIv)的方法,并将该方法应用于青海省植被覆盖度估算。该方法通过高分辨率影像在研究区内选取纯裸地和纯植被样点,并将纯裸地样点的OSAVI作为纯裸地样点像元的OSAVIs,将纯植被样点的OSAVI作为纯植被样点像元的OSAVIv,利用样点像元的OSAVIs和OSAVIv值,通过普通克里金内插法,求得研究区每个像元对应的OSAVIs和OSAVIv。经精度验证结果表明:此方法较常规的参数选取方法,RMSE由0.170降至0.156,MAE由0.137降至0.124。经进一步分析表明,此方法对边缘验证点和非边缘验证点的估算精度都有所提高,由于配准误差和周围地表漫反射的影响,边缘验证点的估算精度低于对非边缘验证点的估算精度。  相似文献   

11.
利用近18年贵州茂兰自然保护区的Landsat TM/ETM+/OLI数据,针对云覆盖对影像质量的影响,提出并使用了一种基于NDVI时间变换一致性的方法,构建出较为完整的研究区植被指数时间序列,实现了小区域尺度下长时间序列的植被覆盖变化研究,并采用一元线性回归模型和相关分析法探讨研究区植被覆盖变化趋势及其对气象因子的响应关系。得出结论:NDVI时间变换一致性处理方法可以有效地消除云覆盖的影响;研究区近18年植被覆盖状况良好且正呈缓慢上升趋势,气候因子与植被覆盖变化呈显著正相关关系,其中平均温度的影响在当月最强,而降水量和平均相对湿度的影响则存在滞后性。  相似文献   

12.
江海英  柴琳娜  贾坤  刘进  杨世琪  郑杰 《遥感学报》2021,25(4):1025-1036
植被冠层含水量CWC(Canopy Water Content)和植被地上部分含水量VWC(Vegetation Water Content)对于植被健康状况和土壤干旱监测具有重要意义.本文联合PROSAIL辐射传输模型和植被水分指数NDWI(Normalized Difference Water Index),发展了...  相似文献   

13.
融合多源遥感数据的高分辨率城市植被覆盖度估算   总被引:2,自引:0,他引:2  
皮新宇  曾永年  贺城墙 《遥感学报》2021,25(6):1216-1226
准确获取城市植被覆盖定量信息对城市生态环境评价,城市规划及可持续城市发展具有重要意义.遥感技术的发展为获取区域及全球植被覆盖信息提供了有效手段,目前基于单传感器、单时相遥感数据的城市植被覆盖度估算方法得到较为广泛的应用.然而,由于城市地表覆盖的复杂性、植被类型的多样性,在一定程度上影响了城市植被覆盖信息提取的精度.为此...  相似文献   

14.
植被覆盖地表土壤水分遥感反演   总被引:12,自引:2,他引:12  
以地域特色突出的新疆渭干河-库车河三角洲绿洲为研究区,联合使用雷达数据和光学遥感数据,对干旱区绿洲土壤和植被水分信息进行提取。在同期光学遥感影像数据提取植被归一化差分水分指数基础上,利用"水-云模型"从雷达数据总的后向散射中去除植被影响,建立土壤后向散射系数与土壤含水量的关系,相关系数为HH极化R2=0.5227,HV极化R2=0.3277。结果表明利用C波段HH极化雷达影像数据结合光学影像数据,进行干旱半干旱地区棉花、玉米等农作物种植区地表土壤水分反演时,在中等覆盖条件下去除植被影响有较好的效果。  相似文献   

15.
黑土区田块尺度遥感精准管理分区   总被引:2,自引:0,他引:2  
基于格网采样与空间插值的精准管理分区方法精度高,但时效性差、成本高。本文以东北农垦地区红星农场农田为研究对象,提出一种基于遥感影像的精准管理分区方法:以裸土高空间分辨率遥感影像作为数据源,结合田间格网采样数据,基于裸土反射光谱特征与黑土主要理化性质的显著相关关系,运用面向对象分割、空间统计分析方法,对典型黑土区田块进行精准管理分区研究,并利用土壤理化性质和农作物生理参数,对分区结果进行评价。得出如下结论:(1)典型黑土区田块内部土壤养分含量空间变异显著;(2)基于裸土影像与面向对象的精准管理分区方法精度高,增强了分区之间的土壤养分与归一化植被指数(NDVI)差异性、分区内部各属性的一致性;(3)基于2015年4月1日和2015年5月20日单期影像分区和两期影像波段叠加(Layer stacking)分区,区间变异系数与区内变异系数之比分别为1.42、1.39和7.63,基于两期影像综合信息的分区结果显著优于基于单期影像分区;(4)基于裸土影像面向对象分割的精准管理分区方法时效性强、成本低、精度高。研究成果为田间变量施肥、发展精准农业、实现农业可持续发展提供依据。  相似文献   

16.
以新疆渭干河——库车河绿洲及其周边地区为研究区,在野外调查的基础上,基于Aster数据,利用NDVI、植被盖度作为特征变量,结合偏最小二乘回归法模型反演得到的盐分含量(SSC)指标作为决策树分类的各节点的判别函数,通过决策树分类方法实现了沙化土地信息的提取与制图。结果表明结合植被覆盖信息与土壤特性能够在提取沙化信息的同时区分出盐渍化土壤,结果与野外调查较为一致。该研究为大区域土壤沙化信息提取与制图提供了较好的方法。  相似文献   

17.
基于遥感技术的厦门市植被覆盖变化监测   总被引:2,自引:0,他引:2  
以厦门市为研究区域,以2000年的Landsat 7和2013年的Landsat 8为研究数据,利用ENVI软件分析了2000年和2013年厦门市植被覆盖变化情况。  相似文献   

18.
全球定位系统干涉反射测量(GPS-IR)是一种新的遥感技术,可用于估算近地表土壤水分含量。考虑到多卫星融合的优势和土壤湿度的时空尺度性,提出一种基于多星融合的土壤湿度最小二乘支持向量机(LS-SVM)滚动式估算模型。首先通过低阶多项式拟合分离GPS卫星直射和反射信号,进而建立反射信号正弦拟合模型,获取相对延迟相位。最后,通过线性回归模型有效分析和选取多卫星相对延迟相位,并建立基于多星融合的最小二乘支持向量机模型进行滚动式估算土壤湿度。以美国板块边界观测计划PBO提供的监测数据为例,对比分析利用单颗、多颗GPS卫星进行土壤湿度滚动式估算的可行性和有效性。经理论分析和两个测站实验表明:该模型充分发挥了LS-SVM的优势,有效综合了各卫星的性能,改善了采用单颗卫星进行土壤湿度估算时,其结果极易出现异常跳变的现象;模型只需较少的建模数据,采用滚动式能实现较长时间的估算,估算误差较为稳定;模型所估算的结果与土壤湿度实测值之间的相关系数R2以及均方根误差分别为0.942和0.962、0.072和0.032,相对于部分单一卫星至少提高了18.18%。因此,土壤湿度问题可作为非线性事件处理,采用多卫星融合估算是可行和有效的。  相似文献   

19.
This paper evaluates the renaturation activities applying the quantification of vegetation cover (VC), the site suitability analysis (SSA) based on the predefined criteria (slope steepness category (SSC), soil erodibility factor (K) and VC) and soil erosion model (SEM) results within the terrain units (TUs) along pipeline rights-of-way (RoW). Quantification of VC percentage is performed to assess the overall restored VC from 2005 to 2007. The results of the quantitative analysis in 2007 show that the total area of restored VC is 10.7 km2, and 8.9 km2 still needs to be restored to comply with the environmental acceptance criteria. As a result of SSA, TUs were prioritized by erosion vulnerability and this allowed to better understand the landscape behaviour in regards to erosion processes. SEM provided more detailed predictions of erosion classes falling into TUs. SEM identified 40% of erosion sites occurred from 2005 to 2010.  相似文献   

20.
In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR  RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx  Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2’s ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号