首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study attempts to identify and forecast future land cover (LC) by using the Land Transformation Model (LTM), which considers pixel changes in the past and makes predictions using influential spatial features. LTM applies the Artificial Neural Networks algorithm) in conducting the analysis. In line with these objectives, two satellite images (Spot 5 acquired in 2004 and 2010) were classified using the Maximum Likelihood method for the change detection analysis. Consequently, LC maps from 2004 to 2010 with six classes (forest, agriculture, oil palm cultivations, open area, urban, and water bodies) were generated from the test area. A prediction was made on the actual soil erosion and the soil erosion rate using the Universal Soil Loss Equation (USLE) combined with remote sensing and GIS in the Semenyih watershed for 2004 and 2010 and projected to 2016. Actual and potential soil erosion maps from 2004 to 2010 and projected to 2016 were eventually generated. The results of the LC change detections indicated that three major changes were predicted from 2004 to 2016 (a period of 12 years): (1) forest cover and open area significantly decreased at rates of almost 30 and 8 km2, respectively; (2) cultivated land and oil palm have shown an increment in sizes at rates of 25.02 and 5.77 km2, respectively; and, (3) settlement and Urbanization has intensified also by almost 5 km2. Soil erosion risk analysis results also showed that the Semenyih basin exhibited an average annual soil erosion between 143.35 ton ha?1 year?1 in 2004 and 151 in 2010, followed by the expected 162.24 ton ha?1 year?1. These results indicated that Semenyih is prone to water erosion by 2016. The wide range of erosion classes were estimated at a very low level (0–1 t/ha/year) and mainly located on steep lands and forest areas. This study has shown that using both LTM and USLE in combination with remote sensing and GIS is a suitable method for forecasting LC and accurately measuring the amount of soil losses in the future.  相似文献   

2.

Background

Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.

Results

The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78?±?27.06, 104.83?±?12.35, 108.77?±?6.77, 76.54?±?7.84 and 83.11?±?8.53 MgC ha?1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.

Conclusions

The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
  相似文献   

3.
This study integrates the RUSLE, remote sensing and GIS to assess soil loss and identify sensitive areas to soil erosion in the Nilufer creek watershed in Bursa province, Turkey. The annual average soil loss was generated separately for years 1984 and 2011, in order to expose possible soil loss differences occurred in 27 years. In addition, sediment accumulation and sediment yield of the studied watershed was also predicted and discussed. The results indicated that very severe erosion risk areas in 1984 was 13.4% of the area, but it was increased to 15.3% by the year 2011, which needs immediate attention from soil conservation point of view. Furthermore, the estimated annual sediment yield of the Nilufer creek watershed was increased from 903 to 979 Mg km?2 y?1 in 27 years period. The study also provides useful information for decision-makers and planners to take appropriate land management practices in the area.  相似文献   

4.

Background

To address how natural disturbance, forest harvest, and deforestation from reservoir creation affect landscape-level carbon (C) budgets, a retrospective C budget for the 8500 ha Sooke Lake Watershed (SLW) from 1911 to 2012 was developed using historical spatial inventory and disturbance data. To simulate forest C dynamics, data was input into a spatially-explicit version of the Carbon Budget Model-Canadian Forest Sector (CBM-CFS3). Transfers of terrestrial C to inland aquatic environments need to be considered to better capture the watershed scale C balance. Using dissolved organic C (DOC) and stream flow measurements from three SLW catchments, DOC load into the reservoir was derived for a 17-year period. C stocks and stock changes between a baseline and two alternative management scenarios were compared to understand the relative impact of successive reservoir expansions and sustained harvest activity over the 100-year period.

Results

Dissolved organic C flux for the three catchments ranged from 0.017 to 0.057 Mg C ha?1 year?1. Constraining CBM-CFS3 to observed DOC loads required parameterization of humified soil C losses of 2.5, 5.5, and 6.5%. Scaled to the watershed and assuming none of the exported terrestrial DOC was respired to CO2, we hypothesize that over 100 years up to 30,657 Mg C may have been available for sequestration in sediment. By 2012, deforestation due to reservoir creation/expansion resulted in the watershed forest lands sequestering 14 Mg C ha?1 less than without reservoir expansion. Sustained harvest activity had a substantially greater impact, reducing forest C stores by 93 Mg C ha?1 by 2012. However approximately half of the C exported as merchantable wood during logging (~176,000 Mg C) may remain in harvested wood products, reducing the cumulative impact of forestry activity from 93 to 71 Mg C ha?1.

Conclusions

Dissolved organic C flux from temperate forest ecosystems is a small but persistent C flux which may have long term implications for C storage in inland aquatic systems. This is a first step integrating fluvial transport of C into a forest carbon model by parameterizing DOC flux from soil C pools. While deforestation related to successive reservoir expansions did impact the watershed-scale C budget, over multi-decadal time periods, sustained harvest activity was more influential.
  相似文献   

5.
The study area is characterized by low and fluctuating rainfall pattern, thin soil cover, predominantly rain-fed farming with low productivity coupled with intensive mining activities, urbanization, deforestation, wastelands and unwise utilization of natural resources causing human induced environmental degradation and ecological imbalances, that warrant sustainable development and optimum management of land resources. Spatial information related to existing geology, land use/land cover, physiography, slope and soils has been derived through remote sensing, collateral data and field survey and used as inputs in a widely used erosion model (Universal Soil Loss Equation) in India to compute soil loss (t/ha/yr) in GIS. The study area has been delineated into very slight (<5 t/ha/yr), slight (5–10 t/ha/yr), moderate (10–15 t/ha/yr), moderately severe (15–20 t/ha/yr), severe (20–40 t/ha/yr) and very severe (>40 t/ha/yr) soil erosion classes. The study indicate that 45.4 thousand ha. (13.7% of TGA) is under moderate, moderately severe, severe and very severe soil erosion categories. The physiographic unit wise analysis of soil loss in different landscapes have indicated the sensitive areas, that has helped to prioritize development and management plans for soil and water conservation measures and suitable interventions like afforestation, agro-forestry, agri-horticulture, silvipasture systems which will result in the improvement of productivity of these lands, protect the environment from further degradation and for the ecological sustenance.  相似文献   

6.
The studies on forest cover change can reveal the status of forests and facilitate for its conservation planning. Idukki is the largest district in the state of Kerala having a total geographical area of 5019 km2. The objectives of the present study are to map forest cover in Idukki district using multi-temporal remote sensing data (1975, 1990, 2001 and 2012) and topographical maps (1925), to analyze the trends in deforestation and land use changes. Overall statistics for the period of 1925 indicate that about 4675.7 km2 (93.2 %) of the landscape was under forest. The forest cover in 2012 was estimated as 2613.4 km2 (52.1 %). Recently, due to the implementation of policies and protection efforts, the rate of deforestation was greatly reduced. The commencement of hydroelectric projects during 1925–1990 responsible for an increase of area under water bodies by inundating other land uses. The long term analysis shows agricultural area been decreasing and commercial plantations been increasing in the district. There has been a significant increase in the area of plantations from 1236.2 km2 (1975) to 1317.3 km2 (2012).  相似文献   

7.

Background

Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clearing, and replanting.

Results

We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–2015, using age-structured forest growth curves and known data for disturbance events and management activities. The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.

Conclusions

Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha?1/year?1 for Atlantic white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference conditions to model future scenarios of land management and disturbance.
  相似文献   

8.
Spatial Variability and Precision Nutrient Management in Sugarcane   总被引:1,自引:0,他引:1  
Investigations were carried out to develop precision nutrient management techniques for sugarcane. The study area (800 ha) comprised of Bijapur, Bilgi and Jamakhandi talukas that lie between 16° 34′–28° 10′ N latitudes and 75° 33′–75° 37′ E longitudes and located around Nandi Sahakari Sakkare Karkhane (NSSK) Niyamit, Galagali. The soils are medium to deep black with pH and EC ranging from 7.32 to 8.36 and 0.17 to 1.13 dS/m, respectively. The soils are low to medium in available nitrogen, medium in available phosphorus and high in available potassium content. Crop condition assessment was made through analysis of LISS-III satellite images using Erdas Imagine software. Fertigation with 300 kg N and 195 kg K per ha at fortnightly interval and soil application of 32 kg P per ha as basal, recorded higher sugarcane yield (167 Mg ha?1) as compared to 124 Mg ha?1 obtained with soil application of 250 kg N, 32 kg P and 156 kg K per ha and flood irrigation as per the package recommended by the University(POP). Fertigation of N and K at weekly interval recorded highest NDVI value (0.354) and soil application of nutrients as per POP resulted in the lowest NDVI of 0.219.  相似文献   

9.
This study involves generation and logical integration of non-spatial and spatial data in a geographical information system framework to address the gap in national level soil organic carbon estimates. Remote sensing derived inputs and other spatial layers are corrected and integrated using same geographical standards. A relational data base of soil organic carbon density of Indian forest was prepared with attribute information. Hierarchical approach was followed to stratify and verify each sample from the data base using the corrected input layers in GIS and the resulting spatially distributed data is called Indian forest soil organic carbon database. The estimated mean soil organic carbon density for Indian forest is 70 t ha?1 and varied from 35.4 t ha?1 in Tropical thorn forest to 104.2 t ha?1 in Himalayan moist temperate forest in the upper 30 cm of soil depth. Due to large variations in the surface layers the estimated standard error ranged from ±1.5 to 15 % for the upper 30 cm layer which is generally higher than the bottom soil layers. The level of detail in the data base helps to establish base line information for global, national and regional level studies.  相似文献   

10.
Sundarban, the largest single patch of mangrove forest of the world is shared by Bangladesh (~ 60 %) and India (~ 40 %). Loss of mangrove biomass and subsequent potential emission of carbon dioxide is reported from different parts of the world. We estimated the loss of above ground mangrove biomass and subsequent potential emission of carbon dioxide in the Indian part of the Sundarban during the last four decades. The loss of mangrove area has been estimated with the help of remotely sensed data and potential emission of carbon dioxide has been evaluated with the help of published above ground biomass data of Indian Sundarban. Total loss of mangrove area was found to be 107 km2 between the year 1975 and 2013. Amongst the total loss ~60 % was washed away in the water by erosion, ~ 23 % was converted into barren lands and the rest were anthropogenically transformed into other landforms. The potential carbon dioxide emission due to the degradation of above ground biomass was estimated to be 1567.98 ± 551.69 Gg during this period, which may account to 64.29 million $ in terms of the social cost of carbon. About three-forth of the total mangrove loss was found in the peripheral islands which are much more prone to erosion. Climate induced changes and anthropogenic land use change could be the major driving force behind this loss of ‘blue carbon’.  相似文献   

11.
The current study was taken up to investigate the utility of remote sensing and GIS tools for evaluation of Integrated Wasteland Development Programme (IWDP) implemented during 1997–2001 in Katangidda Nala watershed, Chincholi taluk, Gulbarga district, Karnataka. The study was carried out using IRS 1C, LISS III data of December 11, 1997 (pre-treatment) and November 15, 2002 (post-treatment) covering the watershed to assess the changes in land use / land cover and biomass that have changed over a period of five years (1997–2002). The images were classified into different land use/land cover categories using supervised classification by maximum likelihood algorithm. They were also classified into different biomass levels using Normalized Difference Vegetation Index (NDVI) approach. The results indicated that the area under agriculture crops and forest land were increased by 671 ha (5.7%) and 1,414 ha (11.94%) respectively. This is due to the fact that parts of wastelands and fallow lands were brought into cultivation. This increase in the area may be attributed to better utilization of surface and ground waters, adoption of soil and water conservation practices and changes in cropping pattern. The area under waste lands and fallow lands decreased by 1,667 ha (14.07%) and 467 ha (3.94%), respectively. The vegetation vigour of the area was classified into three classes using NDVI. Substantial increase in the area under high and low biomass levels was observed (502 ha and 19 ha respectively). The benefit-cost analysis indicates that the use of remote sensing and GIS was 2.2 times cheaper than the conventional methods. Thus, the repetitive coverage of the satellite data provides an excellent opportunity to monitor the land resources and evaluate the land cover changes through comparison of images for the watershed at different periods.  相似文献   

12.
This study aims to monitor the forest cover of Pichavaram mangroves, South India over a period of 40 years using remote sensing, and to record the status of mangroves as perceived by the local community. Out of 1471 ha of total reserved forest area, mangroves occupy 906 ha. The remote sensing maps show that there was a loss of 471 ha from 1970 to 1991 and a gain of 531 ha in 2011. Nearby 20 hamlets depend on mangroves for their livelihood. A village survey conducted at Pichavaram shows that more than 90% of the local community is well aware of the prevailing species, their importance especially after the 2004 tsunami and the impact of management practices, increased rainfall and contribution of local community in the recent increased area of mangroves. The same can be noticed from the high-resolution IKONOS image showing the artificial canal network in the restored region and from rainfall records.  相似文献   

13.
The changes in the land use and land cover (LULC), above ground biomass (AGB) and the associated above ground carbon (AGC) stocks were assessed in Lidder Valley, Kashmir Himalaya using satellite data (1980–2013), allometric equations and phytosociological data. Change detection analysis of LULC, comprising of eight vegetation and five non-vegetation types, indicated that 6% (74.5 km2) of the dense evergreen forest has degraded. Degraded forest and settlement increased by 20 and 52.8 km2, respectively. Normalized difference vegetation index was assessed and correlated with the field-based biomass estimates to arrive at best-fit models for remotely sensed AGB estimates for 2005 and 2013. Total loss of 1.018 Megatons of AGB and 0.5 Megatons of AGC was estimated from the area during 33-year period which would have an adverse effect on the carbon sequestration potential of the area which is already facing the brunt of climate change.  相似文献   

14.
王绍强  许珺  周成虎 《遥感学报》2001,5(2):142-148
土地利用/土地覆被变化是全球变化研究的重点,是影响陆地碳循环的一个重要因子。该文对黄河三角洲河口地区1992年和1996年9月份的TM影像进行非监督分类,做出该地区土地覆被类型分布图,以及估算土地覆被类型的变化面积,计算结果显示1992年该研究地区植被碳库和土壤碳库分别为11.43×10  相似文献   

15.

Background

Pasture enclosures play an important role in rehabilitating the degraded soils and vegetation, and may also influence the emission of key greenhouse gasses (GHGs) from the soil. However, no study in East Africa and in Kenya has conducted direct measurements of GHG fluxes following the restoration of degraded communal grazing lands through the establishment of pasture enclosures. A field experiment was conducted in northwestern Kenya to measure the emission of CO2, CH4 and N2O from soil under two pasture restoration systems; grazing dominated enclosure (GDE) and contractual grazing enclosure (CGE), and in the adjacent open grazing rangeland (OGR) as control. Herbaceous vegetation cover, biomass production, and surface (0–10 cm) soil organic carbon (SOC) were also assessed to determine their relationship with the GHG flux rate.

Results

Vegetation cover was higher enclosure systems and ranged from 20.7% in OGR to 40.2% in GDE while aboveground biomass increased from 72.0 kg DM ha?1 in OGR to 483.1 and 560.4 kg DM ha?1 in CGE and GDE respectively. The SOC concentration in GDE and CGE increased by an average of 27% relative to OGR and ranged between 4.4 g kg?1 and 6.6 g kg?1. The mean emission rates across the grazing systems were 18.6 μg N m?2 h?1, 50.1 μg C m?2 h?1 and 199.7 mg C m?2 h?1 for N2O, CH4, and CO2, respectively. Soil CO2 emission was considerably higher in GDE and CGE systems than in OGR (P?<?0.001). However, non-significantly higher CH4 and N2O emissions were observed in GDE and CGE compared to OGR (P?=?0.33 and 0.53 for CH4 and N2O, respectively). Soil moisture exhibited a significant positive relationship with CO2, CH4, and N2O, implying that it is the key factor influencing the flux rate of GHGs in the area.

Conclusions

The results demonstrated that the establishment of enclosures in tropical rangelands is a valuable intervention for improving pasture production and restoration of surface soil properties. However, a long-term study is required to evaluate the patterns in annual CO2, N2O, CH4 fluxes from soils and determine the ecosystem carbon balance across the pastoral landscape.
  相似文献   

16.
Land use and land cover (LULC) change detection associated with oil and gas activities plays an important role in effective sustainable management practices, compliance monitoring, and reclamation assessment. In this study, a mapping methodology is presented for quantifying pre- and post-disturbance LULC types with annual Landsat Best-Available-Pixel multispectral data from 2005 to 2013. Annual LULC and land disturbance maps were produced for one of the major conventional oil and gas production areas in West-Central Alberta with an accuracy of 78% and 87%, respectively. The highest rate of vegetation loss (178 km2/year) was observed in coniferous forest compared to broadleaf forest, mixed forest, and native vegetation. Integration of ancillary oil and gas geospatial data with annual land disturbances indicated that less than 20% of the total land disturbances were attributable to oil and gas activities. In 2013, approximately 44% of oil and gas disturbances from 2005 to 2013 showed evidence of vegetation recovery. In the future, geospatial data related to wildfire, logging activities, insect defoliation, and other natural and anthropogenic factors can be integrated to quantify other causes of land disturbances.  相似文献   

17.
Assessment of area under agroforestry in Tehri district of North Western Himalaya, Uttarakhand, India has been done using GIS and remote sensing technology. The study district characterized by hilly terrain with varying elevations from 288 m to more than 2800 m and generally gentle slopes, valleys, flat land covers and agricultural terraces. High-resolution satellite imageries (spatial resolution 5.8 m) were used in this study for land uses and land covers classification. According to unsupervised classification, highest area was found under forest class (65.22%) followed by cropland (20.41%). Considerable area was also found under snow cover (9.45%) in the district. Area under agroforestry was estimated to be 5572.26 ha (1.53%) by this method, whereas it was estimated to be 7029.06 ha (1.93%) by supervised classification. Estimated cropland area comes out to be about 20.0%. An accuracy of 86.5% was found in this classification for agroforestry class. Highest area under agroforestry of 3707.36 ha was obtained in 1200–2000 m elevations followed by 2231.26 ha in 288–1200 m elevations. Negligible area was found on high elevation zones of more than 2800 m. The major agroforestry systems of dominated by Grewia oppositifolia (Bhimal), Celtis australis (Kharik) and Quercus leucotrichophora (Banj) were identified and mapped and remaining systems were grouped as others class. Estimated area under G. oppositifolia, C. australis and Q. leucotrichophora based systems come out to be 2330.82, 1456.80 and 1129.10 ha, respectively. These systems are multiple usufructs are food, fuelwood, fodder, fiber and small timber. It has been observed from the accuracy assessment that the estimates of area under agroforestry obtained under this study are reliable.  相似文献   

18.
Degraded lands in Vidarbha region of Maharashtra were assessed using remote sensing technique. District wise land degradation maps were generated on 1:25,0000 scale through visual interpretation of lRS 1A data supported by limited ground survey. It was observed that degraded lands occupy nearly 2.1 million ha or 21.5 per cent of the total geographical area. The analysis of district wise land degradation statistics indicate that. Yavatmal and Akola districts are graded as having most problematic lands in the region. Nagpur, Amravati, Buldana and Wardha districts are categorised as moderately problematic, whereas Gadchiroli, Chandrapur and Bhandara are districts having least problem of degradation. Among the major land forms, the largest degraded area is associated with undifferentiated plain accounting for 1.1 million ha or 12 per cent of the total area of region, which is mostly under cultivation. It thus follows that problem of degradation is more rampant in agricultural land than forest/waste lands.  相似文献   

19.
The UAE has witnessed rapid urban development and economic growth in recent years. With its ambitious vision to become one of the advanced nations by 2021, planners and policy-makers need to know the most likely direction of future urban development. In this study, remotely sensed imagery coupled with cellular automata models were used to predict land cover in Al Ain, the second largest city in the Emirate of Abu Dhabi. Markov and cellular automata models were used for 1992 and 2006 to predict land cover in 2012. Land Use and Land Cover maps for the study area were derived from 1992, 2006, and 2012 Landsat satellite images (TM, ETM+). The models achieved an overall accuracy of approximately 80 %. A Markov model was applied for 2006 and 2012 to predict land cover in 2030. The results conformed to the general trend of the Al Ain Master Plan 2030. This study demonstrates that remote sensing, with the availability of free Landsat data, is a viable technology that could be used to help in the prediction process especially in developing countries, where data availability is a problem.  相似文献   

20.
Effective quantification of land cover changes remains a challenge in Himalayan hills and mountains, and has a colossal value addition for natural resource management. Here we present a new robust method for classifying land cover vegetation at physiognomic scale along steep elevational gradients from ~?200 to ~?7000 masl in the Kailash Sacred Landscape, Western Himalaya, India along with four decades of land use and land cover changes (1976–2011) using remote sensing techniques coupled with intensive ground surveys. Results show that forest cover loss was minimum ca 7.14% of existing forest in 1976; but, however forest fragmentation is high especially in montane broad-leaved and subtropical needle leaved forests. This change largely impacted the quality of valuable tree species such as Quercus spp. Post 1976, continuous migration forced conversion of high altitude agricultural lands into grasslands and scrublands. Human settlement expansion was high especially in low altitudinal range valleys between 1000 and 2000 masl and has increased 6.76 fold since 1976, leading to high forest fragmentation in spite of reduced agriculture area in the landscape. Our physiognomic level classified land cover map will be a key for forest managers to prioritize conservation zones for protecting this unique forest land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号