首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Sedimentary Geology》2005,173(1-4):53-89
Three related basins in southern Turkey, the Ecemiş Basin, the Karsanti Basin and the Aktoprak Basin, document the Neogene-Recent regional exhumation and surface uplift history of the Central Taurus Mountains. The regional tectonic framework was established by a Late Eocene phase of compressional deformation that ended Tethys-related marine deposition. During the Oligocene–Early Miocene non-marine sedimentation was dominantly from braided rivers flowing from the nascent Taurus Mountains and from the Niğde metamorphic massif further north. During this period erosion more or less kept pace with exhumation and the topography remained subdued, allowing a marine incursion (probably eustatically controlled) into the Karsanti Basin in the east during Early Oligocene time. Regional exhumation was possibly controlled by thermal uplift of an actively extending area located behind the subducting S-Neotethys in the Eastern Mediterranean Sea. During exhumation, largely ophiolitic rocks were eroded, revealing the deformed Mesozoic Tauride carbonate platform beneath. The area was affected by a short-lived pulse of compressional deformation/transpression, probably in Mid-Miocene time, but extensional exhumation then resumed, as indicated by the presence of metamorphic-derived clasts from the adjacent Niğde Massif. Late Miocene deposition was dominated by large inward-draining lakes, consistent with regional evidence of a humid climate during this time. Strong surface uplift took place during Plio-Quaternary time. Drainage to the Mediterranean became established, allowing river valleys to incise deeply into the flanks of the Taurus Mountains. Palaeo-valleys were successively infilled with coarse alluvial sediments. This deposition was influenced by NE–SW trending extensional faults. In addition, the sedimentary evolution of the area was strongly influenced by the NNE–SSW trending Ecemiş Fault Zone, which has experienced ca. 60 km of left-lateral strike-slip since the Late Eocene. An important pulse of normal faulting/transtension in latest Miocene–early Pliocene time generated large fault scarps. These acted as sources for large Plio-Quaternary alluvial fans, which prograded across active strike-slip faults. The morphology of these fans was influenced by a combination of Quaternary climatic change, axial-fluvial downcutting and active strike-slip tectonics. In general, the Plio-Quaternary regional uplift of the Taurus Mountains may relate to underplating of material derived from the African plate during progressive collision with the Anatolian (Eurasian) plate in the vicinity of the easternmost Mediterranean Sea.  相似文献   

2.
《Sedimentary Geology》2005,173(1-4):15-51
The Ulukışla Basin, the southerly and best exposed of the Lower Tertiary Central Anatolian Basins, sheds light on one of the outstanding problems of the tectonic assembly of suture zones: how large deep-water basins can form within a zone of regional plate convergence. The oldest Ulukışla Basin sediments, of Maastrichtian age, transgressively overlie mélange and ophiolitic rocks that were emplaced southwards onto the Tauride microcontinent during the latest Cretaceous time. The Niğde-Kirşehir Massif forming the northern basin margin probably represents another rifted continental fragment that was surrounded by oceanic crust during Mesozoic time. The stratigraphic succession of the Ulukışla Basin begins with the deposition of shallow-marine carbonates of Maastrichtian–Early Palaeocene age, then passes upwards into slope-facies carbonates, with localised sedimentary breccias and channelised units, followed by deep-water clastic turbidites of Middle Palaeocene–Early Eocene age. This was followed by the extrusion of c. 2000 m of basic volcanic rocks during Early to Mid Eocene time. After volcanism ended, coral-bearing neritic carbonates and nummulitic shelf sediments accumulated along the northern and southern margins of the basin, respectively. Deposition of the Ulukışla Basin ended with gypsum deposits including turbidites, debris flows, and sabkhas, followed by a regional Oligocene unconformity.The Ulukışla Basin is interpreted as the result of extension (or transtension) coupled with subsidence and basic volcanism. After post-volcanic subsidence, the basin was terminated by regional convergence, culminating in thrusting and folding in Late Eocene time. Comparisons of the Ulukışla Basin with the adjacent central Anatolian basins (e.g. Tuzgölü, Sivas and Şarkişla) support the view that these basins formed parts of a regional transtensional (to extensional) basin system. In our preferred hypothesis, the Ulukışla Basin developed during an intermediate stage of continental collision, after steady-state subduction of oceanic crust had more or less ended (“soft collision”), but before the opposing Tauride and Eurasian continental units forcefully collided (“hard collision”). Late Eocene forceful collision terminated the basinal evolution and initiated uplift of the Taurus Mountains.  相似文献   

3.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

4.
扬子北缘黄陵地区晚中生代盆地演化及其构造意义   总被引:1,自引:0,他引:1       下载免费PDF全文
渠洪杰  康艳丽  崔建军 《地质科学》2014,49(4):1070-1092
扬子北缘黄陵地区古构造应力场于晚中生代经历发生了重大转变,是扬子板块与华北板块在三叠纪碰撞造山之后陆内构造变形的体现。由黄陵背斜周缘晚中生代盆地充填记录所反映出这一变革的起始时间为中侏罗世晚期。早侏罗世—中侏罗世早期,盆地内沉积了以桐竹园组为代表的河流—湖泊相岩层,由沉积碎屑成分和古水流统计所得出的物源区为北部的秦岭地区,黄陵背斜上部可能也接受了碎屑沉积;中侏罗世晚期—晚侏罗世,沉积中心发生了改变,表现为仅仅在黄陵背斜西侧的秭归盆地内有所保存,沉积环境以曲流河到辫状河流和三角洲为主,物源区则局限于黄陵背斜;早白垩世初期,周坪盆地和宜昌盆地为沉积中心,近缘冲积扇和辫状河流体系占据主体,物源区依然为黄陵地区,两盆地在黄陵背斜南缘可能相连,黄陵背斜上部的原下侏罗统被剥蚀;早白垩世晚期—晚白垩世,远安盆地逐渐发育,盆地西缘为冲积扇—辫状河流体系,中、 东部则以曲流河—湖泊沉积环境为主体,并间有干旱沙漠环境。原型盆地再造结果显示,早侏罗世—中侏罗世早期盆地展布具有近东西向特点,古地貌总体呈现出北部为山脉、 南部为盆地的格局;中侏罗世晚期以来,盆地呈近南北向,黄陵背斜逐渐形成山脉,盆地位于其东西两侧。两期盆地沉积特征反映了扬子北缘古构造应力场由近南北向转变为近东西向的过程。  相似文献   

5.
楚雄盆地是青藏高原东缘“三江”构造带与扬子地台西缘结合部重要的含矿沉积盆地之一,以白垩纪地层赋存多个层位的砂岩型铜矿床为特征而不同于其他沉积盆地,长期备受关注。前人曾从矿床学角度进行砂岩铜矿床成矿作用相关研究,相对缺乏沉积学方面工作,进而导致对含矿岩系沉积环境及盆地属性和矿床成因认识的分歧。对楚雄盆地北部包括大村铜矿区在内的桂花地区晚白垩世含矿岩系进行了系统的地表调查、坑道及钻孔观测和沉积环境研究,认为该区上白垩统马头山组和江底河组是一套连续沉积组合,由河道亚相和边滩亚相沉积共同组成,形成于相对干旱的气候环境;沉积物源区位于盆地的北侧,曾出露有基性火山岩、花岗质岩石、碎屑岩、碳酸盐岩以及少量的变质岩等;晚白垩世时期,楚雄盆地具有北高南低的古地理格局,且在江底河组沉积成岩过程中,盆地总体曾经历了区域挤压作用引起的隆升破坏,也是区内砂岩型铜矿床的主要成矿时期。  相似文献   

6.
鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义   总被引:7,自引:0,他引:7       下载免费PDF全文
鸡西、勃利盆地白垩纪砂岩骨架矿物成分的模式分析显示:下白垩统城子河组和穆棱组砂岩的源区主要为切割型岛弧,结合古水流方向和砂岩地球化学特征研究,物源区主要为小兴安岭-张广才岭;上白垩统猴石沟组砂岩的源区主要为基底隆升和切割型岛弧。结合古水流方向和砾石的统计结果认为,鸡西、勃利盆地物源区主要为桦南隆起和密山隆起,以及小兴安岭-张广才岭。据白垩纪砂岩物源,晚白垩世砾岩成分,以及区域地质资料分析,下白垩统城子河组和穆棱组时期,鸡西盆地、勃利盆地和黑龙江东部各盆地为统一的原型盆地,早白垩世末期随着桦南隆起和密山隆起的隆升而破坏。并在晚白垩世早期已隆升,并为周缘盆地提供物源,形成现今黑龙江东北部地区的盆岭格局。  相似文献   

7.
This study documents sediment infill features and their responses to the tectonic evolution of the Sichuan Basin and adjacent areas. The data include a comparison of field outcrops, well drillings, inter-well correlations, seismic data, isopach maps, and the spatial evolution of sedimentary facies. We divided the evolutionary history of the Sichuan Cretaceous Basin into three stages based on the following tectonic subsidence curves: the early Early Cretaceous (145–125 Ma), late Early Cretaceous to early Late Cretaceous (125–89.8 Ma), and late Late Cretaceous (89.8–66 Ma). The basin underwent NW–SE compression with northwestward shortening in the early Early Cretaceous and was dominated by alluvial fans and fluviolacustrine sedimentary systems. The central and northern areas of the Sichuan Basin were rapidly uplifted during the late Early Cretaceous to early Late Cretaceous with southwestward tilting, which resulted in the formation of a depression, exhibited southwestward compression, and was characterized by aeolian desert and fluviolacustrine deposits. The tectonic framework is controlled by the inherited basement structure and the formation of NE mountains, which not only affected the clastic supply of the sedimentary basin but also blocked warm-wet currents from the southeast, which changed the climatic conditions in the late Late Cretaceous. The formation and evolution of Cretaceous sedimentary basins are closely related to synchronous subtle far-field tectonism and changes in climate and drainage systems. According to the analysis of the migration of the Cretaceous sedimentation centers, different basin structures formed during different periods, including periods of peripheral mountain asynchronous thrusting and regional differential uplift. Thus, the Sichuan Cretaceous sedimentary basin is recognized as a superimposed foreland basin.  相似文献   

8.
As achieves of regional environmental changes in the past, alluvial fans have received extensive attention from geoscience community. Tectonic activity and climate change are two of the main factors affecting the development of alluvial fans. The Qilian Mountains, which is located on the northeastern edge of the Tibetan Plateau, experienced severe uplift since the Cenozoic. With the huge relief from surrounding areas, a series of alluvial fans developed at the northern foot of the Qilian Mountains. That makes it become an ideal area to study the relationships between tectonic uplift, climate change, and alluvial fan development. In order to explore how climate and tectonic changes have effect on the formation and development of alluvial fans, based on stream power model and diffusion equations, a numerical model of the drainage basin-fan system was built. Xigou River and Dayekou River with their fans in Qilian Mountains were simulated by using the above-mentioned numerical model. The results show that both the change in precipitation and the uplift rate affect the fan slope. Either the increase in the uplift rate or the decrease in precipitation causes the increment of fan slope, and vice versa. Fan slope changes linearly with the uplift rate variation, while the effect of precipitation on fan slope is relatively small. The response of catchment to tectonic activity and precipitation disturbances, as the change of sedimentary flux, is also in different patterns. The research will provide a new perspective for understanding the influence of regional tectonic activities and climate change on the geomorphological process.  相似文献   

9.
青藏高原是新生代隆升的构造地貌。本文试图通过对青藏高原东北缘的西秦岭上白垩统的研究, 揭示新生代青藏高原隆升之前的晚白垩世原型盆地和构造地貌背景, 这对探索青藏高原隆起过程的起始至关重要。西秦岭腹地岷县地区分布着一套角度不整合于下伏不同时代地层之上且沉积序列相近的上白垩统红层地层。该套红层现今呈离散分布, 故多被认为是西秦岭陆内造山阶段不同山间盆地或走滑拉分盆地的沉积物。对不同高程和露头上的该套红层与下伏地层之间角度不整合面地质特征对比分析, 特别是对不整合面之上含砾砂岩和砂岩的粒度组成和颗粒的显微结构研究表明, 该套红层底部的胶结砂砾岩和其上的红色砂岩皆具有沙漠沉积的特征, 也就是说西秦岭晚白垩世曾出现过干旱沙漠环境。沙漠环境的出现不仅需要干旱炎热气候条件, 而且需要相对平坦的地形地貌空间条件。据此, 本文提出了西秦岭在晚白垩世可能处于相对平缓的古地貌状态。现今这套红层不连续分布在相对平坦的山顶面, 其下部以洪积砾岩、河床砾岩和砂岩、沙漠相砂岩互层, 上部则以河—湖相红色泥岩、粉砂岩和细砂岩等细碎屑沉积为主。经研究分析认为西秦岭在上白垩统红层开始沉积之时, 总体已处于地形起伏不大的洪积平原和宽谷型河流地貌, 而晚期则演变为平坦湖盆地貌, 其原始盆地为统一宽缓的湖相盆地。现今上白垩统红层地层和角度不整合的弥散性分布是在印度板块—欧亚板块碰撞汇聚的动力学背景下, 青藏高原崛起和逆冲—走滑作用以及地壳不均匀抬升—侵蚀的结果。西秦岭晚白垩世相对平坦的古地貌状态确定可为研究西秦岭中新生代陆内构造过程和高原隆升与板内变形在东北缘的扩展提供重要线索和参考标志。  相似文献   

10.
准噶尔盆地南缘侏罗纪沉积相演化与盆地格局   总被引:24,自引:4,他引:24       下载免费PDF全文
通过对准噶尔盆地南缘侏罗系5条剖面的沉积特征对比,结合钻井资料和地震资料,确定了准噶尔盆地南缘侏罗纪盆地边界、沉积相演化及盆地格局。头屯河剖面和后峡剖面的沉积相对比及古流向测量表明二者在早、中侏罗世形成于同一沉积体系。在早、中侏罗世,沉积相逐渐从以辫状河-三角洲-湖泊相为主过渡到以河流相-湖泊相为主,沉积水体逐渐变浅;其中三工河组沉积时期盆地沉积范围达到最大,西山窑组沼泽相发育,车排子-莫索湾凸起自西山窑组沉积时期开始形成;早、中侏罗世的盆地边界至少位于后峡以南附近,此时不存在地理分割明显的天山山脉。晚侏罗世-早白垩世早期,沉积相从辫状河-滨浅湖相为主迅速演变为以辫状河-冲积扇相为主。在此期间盆地边界明显向北迁移,天山山脉明显隆升并造就天山南北沉积环境的巨大差异,博格达山构成盆地南缘的又一重要物源体系。  相似文献   

11.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

12.
乌伦古坳陷位于准噶尔盆地东北部、阿尔泰山南缘,由北西-南东走向的红岩断阶带、索索泉凹陷和南部斜坡带组成。坳陷内上三叠统直接覆盖在石炭系基底之上,上三叠统和侏罗系发育生长地层,白垩系向红岩断阶带方向超覆沉积在侏罗系顶削蚀不整合面之上,古近系、新近系和第四系较稳定地沉积在白垩系顶小角度不整合面之上。索索泉凹陷中生界底面最深,往南部斜坡带逐渐抬高。红岩断阶带中生界被抬升剥蚀,古生界之上直接覆盖新生界。根据生长地层、不整合面、卷入变形的地层时代判断:早-中三叠世乌伦古坳陷延续了二叠纪的隆升剥蚀格局,地层缺失;晚三叠世-侏罗纪陆梁隆起隆升,在坳陷内沉积生长地层,局部发育逆冲断层;白垩纪为红岩断阶带主形成期,白垩系朝着红岩断阶带超覆沉积于侏罗系之上;古近纪构造变形微弱,沉积较为稳定;新近纪-第四纪发育挤压构造和正断层。乌伦古坳陷中生代受阿尔泰陆内造山作用制约,属于阿尔泰中生代陆内前陆盆地系统的一部分:楔顶带从阿尔泰山不断往南扩展,到白垩纪扩展到乌伦古坳陷红岩断阶带;前隆带位于陆梁隆起,并于晚三叠世-侏罗纪挠曲隆升。古近纪造山作用减弱,乌伦古坳陷区域沉降,地层较稳定沉积。新近纪-第四纪受印度-欧亚板块碰撞作用的远程效应影响,北天山发生陆内造山作用,乌伦古坳陷远离北天山,挤压构造变形相对较弱。新近纪-第四纪正断层为造山间歇期形成的区域性伸展构造,代表了中亚地区晚新生代脉动式冲断作用的一个间歇期。  相似文献   

13.
为了揭示长约2500 km的天山山脉中新生代隆升特征,本文系统梳理分析了已发表的磷灰石裂变径迹数据和本次野外采样测得磷灰石裂变径迹数据约460个,岩性以花岗岩和砂岩为主。结果显示整个天山山脉隆升具有明显的时空差异性。白垩纪以前记录的径迹数据约占14%,白垩纪以来的数据约占86%,晚古生代末天山已有径迹年龄记录,到晚侏罗世天山部分地区发生隆升,整体隆升不明显,早白垩世以来整个天山普遍隆升,且存在多期隆升事件,但隆升剥蚀速率存在明显差异。南北方向上,自南向北径迹年龄有减小的趋势,揭示山脉隆升自南天山向北天山扩展;东西方向上,西天山隆升时限较东天山隆升早,但白垩纪以来东、西天山均有隆升记录。天山山脉差异性隆升是不同陆块对亚洲板块南缘碰撞增生作用的共同结果,其内部块体的结构特征和力学性质是差异隆升的基础和前提。  相似文献   

14.
通过对西秦岭上白垩统红层地层基本沉积特征的研究和空间高程分布的定量化分析,讨论了西秦岭晚白垩世时期可能的构造地貌状态及西秦岭新生代以来地壳隆升的空间变化规律。取得如下认识:①根据西秦岭上白垩统底部洪积-冲积砾岩层之上普遍存在一套厚度不等的具有风成砂岩特征的红色中细粒砂岩和上部出现以泥岩、泥质粉砂岩为主的湖相沉积,结合现今多分布在不同水系分水岭之上,以及西秦岭中部宕昌-岷县-临潭断裂带两侧上白垩统红层地层顶面高程和底部角度不整合面高程没有显著差异分析,认为西秦岭无论在晚白垩之前经历了何种构造过程,晚白垩世具有整体稳定的泛沙漠-湖盆的古构造地貌状态,且断裂带不具备控制上白垩统沉积的构造边界性质;②现今离散型分布在西秦岭的上白垩统沉积地层反映的原型盆地不是孤立的、受区域断裂控制的山间盆地,而是统一的泛沙漠-内陆湖盆,现今的离散型分布是新生代以来地壳不均匀隆升和侵蚀的结果;③西秦岭上白垩统底部的角度不整合面产状,虽然由于后期构造变动呈非完全水平状态,但总体产状平缓。从大区域尺度分析,可以近似看做原始近水平的古地貌面。通过对该角度不整合面高程信息提取和模拟分析,结果表明,其高程分布具有从南西到北东、从北西到南东逐渐降低,穿越区域断裂带没有显著梯度变化,指示了西秦岭新生代以来的隆升具有整体性和隆升幅度呈连续梯度变化的特征。这可能指示了西秦岭新生代以来的地壳隆升机制主要不是上地壳挤压逆冲缩短,而是在印度板块-欧亚板块碰撞汇聚的动力学背景下,下地壳或上地幔自西南向北东连续流变逐渐增厚,造成了青藏高原东北缘呈向北东突出的弧形扩展隆升。  相似文献   

15.
The Ordos basin was developed from Mid-Late Triassic to Early Cretaceous, and then entered into its later reformation period since the Late Cretaceous. Its main body bears the features of an intra-cratonic basin. The basin also belongs to a multi-superposed basin which has overlapped on the large-scale basins of the Early and Late Paleozoic. Currently, Ordos basin has become a residual basin experienced reformation of various styles since the Late Cretaceous. It's suggested that there were at least four obvious stages of tectonic deformations existing during the basin's evolution, dividing the evolution and sedimentation into four stages. The prior two stages were of the most prosperous, during which the lake basin was broad, the deposition range was more than twice larger than the current residual basin, resulting in major oil- and coal-bearing strata. The two stages were separated by regional uplift fluctuations in the area. At the end of the Yan'an Stage, the depositional interruption and erosion were lasting for a short period of time. The third one is the Mid- Jurassic Zhiluo-Anding stage, in which the sedimentation extent was still broad but the lake area was obviously reduced. In the Late Jurassic tectonic deformation was intensive. A thrust-nappe belt was formed on the basin's western margin while conglomerate of different thickness were accumulated within the foredeep of the eastern side. The central and eastern parts of the basin were subject to erosion and reformation. A regional framework with "uplift in the east and depression in the west" took shape in the area west of the Yellow River. In the Early Cretaceous sediments were widely distributed, unconformably overlapping the former western margin thrust belt and the ridges on the northern and southern borders. There are abundant energy resources such as oil, natural gas, coal and uranium deposits formed in Ordos Basin. The main stages of generation, mineralization and positioning of the multiple energy resources have obvious responding co  相似文献   

16.
The Pliocene–Early Pleistocene Mangas Basin in SW New Mexico, USA, was a N–NW-trending full graben that changed southward to an eastward-tilted half graben. Unlike the facies distribution predicted in existing models, the half-graben part of the Mangas Basin was characterized by broad alluvial fans derived from the footwall scarp, smaller hangingwall-derived alluvial fans, and a shallow, closed lake (Lake Buckhorn) that locally lapped onto the hangingwall hills. The distribution of facies within the full-graben part of the Mangas Basin was also unlike that predicted in current models, primarily because of a broad belt of alluvial-fan sediment derived from the eastern footwall scarp and a narrow belt of axial-fluvial sediment adjacent to the western footwall scarp. The distribution of facies in the Mangas Basin does not appear to have been controlled by the eastward tilt of the floor of the half graben or ‘see-saw’ motion of the floor of the full graben, as predicted by existing models, but rather by the large size of the alluvial fans on the eastern side of the basin. These fans were derived from large, high-relief catchments on the footwall scarp of the Mogollon Mountains, the uplift of which began during Early Miocene. This example illustrates how earlier uplift and drainage development in a mountain range may influence facies distribution in a younger extensional basin.  相似文献   

17.
运用斜长石-角闪石温压计对华北地块北缘内蒙古隆起及燕山褶断带内不同时期花岗质侵入岩的结晶压力及侵位深度进行了估算.结果表明,晚古生代-早中生代期间,在内蒙古隆起及燕山褶断带之间,存在有强烈的差异性隆升及剥露过程,但这种差异性隆升及剥露在早侏罗世以来的表现则不明显.晚古生代-早中生代差异性隆升及剥露可能是导致内蒙古隆起上大量基底岩石出露、中-新元古代及古生代沉积盖层缺失及燕山褶断带中-新元古代及古生代沉积盖层大量保留的主要原因.内蒙古隆起强烈的隆升及剥露过程发生在晚石炭世-早侏罗世期间,其东部的剥露幅度比中东部明显偏小.晚古生代-早中生代期间内蒙古隆起的强烈剥露及其与燕山褶断带之间的差异性隆升可能与古亚洲洋板块向华北地块的俯冲、消减、碰撞及华北北缘区域性断裂(如平泉-古北口-赤城-尚义断裂、赤峰-围场-多伦断裂)的活动有关.燕山褶断带的强烈隆升与剥露发生则在晚侏罗世-早白垩世之后.晚侏罗世-早白垩世以来,华北地块北缘南北两侧均有一次明显的剥露过程,这一剥露可能与本区及中国东部地壳强烈伸展有关.  相似文献   

18.
早白垩世期间,青藏高原东北缘的祁连山隆升明显,在区域性构造运动和气候变化的综合影响下,在祁连山山前盆地中堆积了一套特殊的碎屑岩序列。甘肃张掖鹦鸽嘴白垩系发育完整,虽局部被第四系覆盖,但总体出露良好,其特殊相序单元构成的非常规体系域概念框架下的陆相层序地层模式,对研究祁连山隆升的沉积学响应及环境效应具有重要意义。鹦鸽嘴剖面下白垩统包括赤金堡组、下沟组和中沟组,可以识别出10个三级层序(S.1-S.10),LAST单元由冲积扇和河流相粗碎屑岩地层组成,湖泊相细碎屑岩沉积物构成三级层序的HAST单元。鹦鸽嘴剖面赤金堡组中下部的4个三级层序和下沟组中普遍发育的风成砂岩,是祁连山隆升造成的"焚风效应"的产物,对研究祁连山阶段性隆升特征具有重要的指示意义。早白垩世,研究区经历了从半干旱气候-干旱气候-潮湿气候的演变,在一定程度上反映了祁连山隆升过程从幕式隆升-快速隆升-均衡稳定隆升的阶段性特征。早白垩世末期,祁连山进入快速强烈隆升阶段,研究区区域性抬升为剥蚀区,整体缺失上白垩统。因此,鹦鸽嘴剖面下白垩统层序地层序列,不仅是早白垩世祁连山隆升过程的物质记录,还为早白垩世东亚大气环流格局变化的研究提供了物质基础。  相似文献   

19.
The Xining Basin is located in the northeastern Qinghai–Tibetan Plateau, and its continuous Cenozoic strata record the entire uplift and outgrowth history of the Tibetan Plateau during the Cenozoic. The newly obtained apatite fission track data presented here shows that the Xining Basin and two marginal mountain ranges have experienced multiphase rapid cooling since the Jurassic, as follows. In the Middle–Late Jurassic, the rapid exhumation of the former Xining Basin resulted from collision between the Qiangtang Block and the Tarim Block. During the Early–Late Cretaceous, the former Xining Basin underwent a tectonic event due to marginal compression, causing the angular unconformity between the Upper and Lower Cretaceous. In the Late Cretaceous to the Early Cenozoic, collision between the Qiangtang Block and the Lhasa Block may have resulted in the rapid exhumation of the Xining Basin and the Lajishan to the south. In the Early Cenozoic(ca. 50–30 Ma), collision between the Indian and Eurasia plates affected the region that corresponds to the present northeastern Qinghai–Tibetan Plateau. During this period, the central Qilian Block rotated clockwise by approximately 24° to form a wedge-shaped basin(i.e., the Xining Basin) opening to the west. During ca. 17–8 Ma, the entire northeastern Qinghai–Tibetan Plateau underwent dramatic deformation, and the Lajishan uplifted rapidly owing to the northward compression of the Guide Basin from the south. A marked change in subsidence occurred in the Xining Basin during this period, when the basin was tectonically inverted.  相似文献   

20.
青藏高原东北缘的祁连山,在早白垩世期间发生明显隆升,受区域性构造运动和白垩纪特殊行星风系的影响,在山前盆地中沉积了一套特殊的碎屑岩序列。兰州盆地下白垩统发育完整,虽然局部被第四系覆盖,但总体出露良好,其特殊的相序单元构成的非常规体系域概念框架下的陆相层序地层学模式,对研究祁连山隆升的沉积学响应及环境效应具有重要意义。兰州盆地下白垩统为河口群,可以识别出5个三级层序(S.1—S.5),包括LAST和HAST两个非常规体系域,冲积扇和河流相粗碎屑沉积构成三级层序的LAST单元,HAST单元由湖泊相细碎屑地层组成。河口群上部地层发育的风成砂岩序列,在一定程度上可以解释为祁连山隆升造成的"焚风效应"产物,对研究祁连山的阶段性隆升特征具有重要的意义。早、晚白垩世之交,祁连山开始快速强烈隆升,兰州盆地整体抬升为剥蚀区,导致研究区缺失上白垩统。因此,兰州盆地下白垩统特殊的层序地层序列,不仅是早白垩世祁连山隆升的物质记录,还为研究早白垩世东亚大气环流格局变化提供了物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号