首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins.  相似文献   

2.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Soil erosion is one of the most severe land degradation processes in the Mediterranean region. Although badlands occupy a relatively small fraction of the Mediterranean area, their erosion rates are very high. Many studies have investigated to what extent vegetation controls soil erosion rates. This study, however, deals with the impact of erosion on vegetation establishment. In semi‐arid badlands of the Mediterranean, soil water availability constitutes the main limiting factor for vegetation development. As a consequence, south‐facing slopes are typically less vegetated due to a very large water stress. However, these findings do not necessarily apply to humid badlands. The main objective of this paper is to determine the topographic thresholds for plant colonization in relation to slope aspect and to assess the spatial patterns of vegetation cover and species richness. We surveyed 179 plots on highly eroded badland slopes in the Central Pyrenees. We defined four aspect classes subdivided into slope angle classes. Colonization success was expressed in terms of vegetation cover and species richness. Slope angle thresholds for plant colonization were identified for each slope aspect class by means of binary logistic regressions. The results show that a critical slope angle exists below which plants colonize the badland slopes. Below this critical slope angle, plant cover and species richness increase with a decreasing slope angle. The largest critical slope angles in humid badlands are observed on south‐facing slopes, which contrasts with the results obtained in semi‐arid badlands. North‐facing slopes however are characterized by a reduced overall vegetation cover and species richness, and lower topographic threshold values. The possible underlying processes responsible for this slope‐aspect discrepancy in vegetation characteristics are discussed in terms of environmental variables that control regolith development, weathering and erosion processes. Moreover, possible restoration strategies through the use of vegetation in highly degraded environments are highlighted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

5.
The morphological consequences of paraglacial modification of valley-side drift slopes are investigated at six sites in Norway. Here, paraglacial slope adjustment operates primarily through the development of gully systems, whereby glacigenic sediment is stripped from the upper drift slope and redeposited in debris cones downslope. This results in an overall lowering of average gradient by up to 4·5° along gully axes. In general, slope profile adjustment appears to be characterized by a convergence of slope profiles towards an ‘equilibrium form’ with an upper rectilinear slope gradient at 29°± 4° and a range of concavities of approximately 0·0 to 0·4. After initial rapid incision, further gully deepening is limited, but gullies become progressively wider as sidewall gradients decline to c. 25°, after which parallel retreat appears to predominate. The final form of mature paraglacial gully systems consists of an upper bedrock-floored source area, a mid-slope area of broad gullies whose sidewalls rest at stable, moderate gradients, and a lower slope zone where gullies discharge onto the surfaces of debris cones and fans. Some gullies appear to have attained this final form and have stabilized following exhaustion of readily entrainable sediment within decades of gully initiation. At most sites, paraglacial activity has transformed steep drift-mantled valley sides into gullied slopes where an average of c. 2–3 m of surface lowering has taken place. At the most active sites, these average amounts imply minimum erosion rates averaging c. 90 mm a−1 since gully initiation, which highlights the extreme rapidity of paraglacial erosion of deglaciated drift-mantled slopes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Seepage erosion was investigated in an amphitheatre with a semicircular valley head, steep slopes, and a flat bottom developed in granodiorite hills at Obara, Aichi prefecture, Japan. A high sediment yield occurred where the measuring sites were located at the base of the landslide debris in the base of the convex slopes, whereas sediment outflows were small where the measuring sites were located at the base of the strong convex slopes. This implies that the seepage erosion was an effective agent for removal of debris deposited at the base of the slope. Small landslides can be found at the lower slopes within the area of the observed amphitheatre. The slope stability analysis and subsurface water observation of the lower slope suggest that the small landslides in this amphitheatre are due to over-steepened slopes, and relatively insensitive to subsurface water status. Colluvium in the flat valley bottom thinly covers the bedrock surface. Therefore the topography of the amphitheatre was found to be formed by parallel retreat of slopes by the repetition of basal seepage erosion and subsequent small landslides.  相似文献   

8.
Recent publications from field and simulation studies indicate that runoff per unit area decreases as the length of the slope being observed is increased. This scale effect has been observed and documented for slopes with a uniform infiltration capacity as well as for slopes along which infiltration capacity is variable. This paper presents the design and testing of a laboratory flume for the study of the processes that lead to this scale effect, particularly for the case of slopes covered with crops. The features of the flume include reliable experimental control of soil water content prior to rainfall, high intensity rainfall without erosion, uniform crop growth along the slope, and the option of varying the infiltration rate independently of rainfall and soil characteristics. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   

10.
This study examined the variation in soil erodibility along hillslopes in a Prairie landscape. The soil loss produced by simulated rainfall on undisturbed soils was used as an index of relative soil erodibility. Relative erodibility, and several soil properties, were measured at the summit, shoulder, midslope footslope and toeslope of 11 slope transects in an area of cultivated grassland soils on hummocky glacial till. The variation of erodibility with slope position was statistically significant, and slope position explained about 40 per cent of the variation in the erodibility measurements. Erodibility was 14 per cent higher on the shoulder and midslope, and 21 per cent lower on the toeslope, than on the summit and footslope. Local variation in erodibility along slopes was considered to be an important control on patterns of soil erosion in the landscape. The variation of erodibility along the slopes reflected soil property trends. The greatest erodibility was associated with upper slope positions where soils tended to be shallow, coarse, poorly leached and low in organic matter, while lower erodibility was found at lower slope positions with deep, organic-rich and leached soils. Of the individual soil properties considered, silt and sand content were the most highly correlated with erodibility. The results, together with results from other studies, also suggest that net erosion and erodibility are positively related.  相似文献   

11.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The Cesium-137 technique was used to estimate soil erosion in the Xihanshui River Basin.More than 100 samples were taken from 10 sites and 20 hillslopes with a 10cm diameter hand-operated core driller.Each sample was 60 cm long.The 137Cs activity was analyzed by gamma spectrometry.The simplified mass balance model and the profile distribution model were used to calculate soil erosion and deposition rate.The local 137Cs reference ranged from 1,600 to 2,402 Bq m-2.The data shows an exponential decrease of mass concentration and amount with depth in an undisturbed soil profile.Soil erosion in the river basin is moderate or severe on cultivated land with annual erosion rates of 2,000-6,000 t km-2yr-1.In general,very severe or severe soil erosion occurred at the upper slope sections,moderate or severe soil erosion at the middle section,and moderate or slight soil erosion at the lower slope sections.On the slopes with natural vegetation,consisting of herbaceous and wood species,the erosion rate is much lower or not detectable.On the lower section of slopes with well-developed vegetation however,there was no soil loss,instead deposition occurred at a rate of more than 300 t km-2 yr-1.The slope gradient and vegetation cover affected soil erosion and deposition rates.In general,the rate of soil erosion was proportional to the slope gradient and inversely proportional to the degree of vegetative cover.  相似文献   

14.
he slopes in field conditions are always irregular, but the supposed uniform slopes are used in most erosion models. Some studies used several uniform slopes to approximate an irregular slope for estimating soil erosion. This approximation is both time-consuming and weak in physical insights. In this paper, the concept of equivalent slope is presented based on that runoff potential on uniform slope is equal to that of irregular slope, and the equivalent uniform slope is used to estimate soil erosion instead of the irregular slopes. The estimated results of slope-length factors for convex and concave slopes are consistent with those from the method of Foster and Wischmeier, The experiments in the southern part of the Loess Plateau in China confirmed the applicability of the present method. The method is simple and has, to some extent, clear physical meanings, and is applicable for estimating soil erosion from irregular slopes.  相似文献   

15.
Landslides and rockfalls are key geomorphic processes in mountain basins. Their quantification and characterization are critical for understanding the processes of slope failure and their contributions to erosion and landscape evolution. We used digital photogrammetry to produce a multi‐temporal record of erosion (1963–2005) of a rock slope at the head of the Illgraben, a very active catchment prone to debris flows in Switzerland. Slope failures affect 70% of the study slope and erode the slope at an average rate of 0.39 ± 0.03 m yr¯¹. The analysis of individual slope failures yielded an inventory of ~2500 failures ranging over 6 orders of magnitude in volume, despite the small slope area and short study period. The slope failures form a characteristic magnitude–frequency distribution with a rollover and a power‐law tail between ~200 m³ and 1.6 × 106 m³ with an exponent of 1.65. Slope failure volume scales with area as a power law with an exponent of 1.1. Both values are low for studies of bedrock landslides and rockfall and result from the highly fractured and weathered state of the quartzitic bedrock. Our data suggest that the magnitude–frequency distribution is the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment, and make up the rollover. Type (2) failures are less frequent and larger rockslides and rockfalls within the internal bedded and fractured slope along pre‐determined potential failure surfaces, and make up the power‐law tail. Rockslides and rockfalls of high magnitude and relatively low frequency make up 99% of the total failure volume and are thus responsible for the high erosion rate. They are also significant in the context of landscape evolution as they occur on slopes above 45° and limit the relief of the slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Weathering is linked complexly to the erosion and evolution of rock slopes. Weathering influences both the strength of rock slopes and the stresses that act upon them. While weathering has often been portrayed in an over‐simplified way by those studying rock slope instability, in reality it consists of multiple processes, acting over different spatial and temporal scales, with many complex inter‐linkages. Through a demonstration of the sources of non‐linearities in rock slope weathering systems and their implications for rock slope instability, this paper proposes five key linkages worthy of further study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Although a traditional geological survey of terraced coastal slopes is an essential part of studies aimed to reconstruct relative sea-level changes, the stratigraphic and chronological data so obtained frequently prove inadequate to completely unravel the sometimes very complex history of sea-level fluctuation, especially where erosion has prevailed over deposition and/or deposits are difficult to date. On the basis of our experience we think that much additional information can be gained through geomorphological interpretation of the profiles of those slopes. In order to facilitate such interpretation, a computer simulation model is developed that is able to predict the morphogenic response to a variety of possible relative-sea-level histories. The results can be used to envisage some new interpretation keys for the analysis of real situations and, hopefully, as bases for the conception of general models of coastal slope evolution under the action of a variable sea level. Though preliminary, the results so far obtained permit identification of the geomorphological consequences (in terms of resulting slope profile) of ordered successions of transgressions and regressions of different amplitude, rate, order and style. Moreover they provide interesting insights into the role that different styles of tectonic uplift may play in the phenomenon of multiple terracing of coastal slopes.  相似文献   

18.
Physical modelling experiments have been carried out in a cold room to test on a small scale, the effects of water supply during the thaw of an experimental slope with permafrost. Permafrost was maintained at depth and a thin active layer was frozen and thawed from the surface. Data from the experiments relate to two different conditions, first with moderate rainfall, and second with heavy rainfall during the thaw period. When moderate rainfall is applied during thaw phases, the experimental slope is slightly degraded. At the scale of the experiment, erosion processes involve frost jacking of the coarse blocks, frost creep and gelifluction that induce slow and gradual down slope displacements of the active layer, but also small landslides leading to large but slow mass movements with short displacements. Changes in experimental slope morphology are marked by the initiation of a small‐scale drainage network and the development of a little crest line which shows a progressive upslope migration. With such boundary conditions, there is not enough water supply to evacuate downslope the whole of the eroded material and a topographic smoothing is observed. When heavy rainfall is applied during thaw periods, rapid mass wasting (small mud‐flows and debris flows) become prominent. Slope failures are largely controlled by the water saturation of the active layer and by the occurrence of steeper slopes. At the scale of the experiment, rates of erosion and maximum incision increase by about 100% leading to significant slope degradation with marked and specific scars comparable to gullying. These morphological changes are dependant on both the size and the frequency of catastrophic events. These experiments provide detailed data that could improve the knowledge of the physical parameters that control the initiation, at a small‐scale, of erosion processes on periglacial slopes with a thin active layer and/or with thin cover of mobilizable slope deposits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号