首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

2.
The spreading pathways of the Somali and Arabian coastal upwelled waters in the northern Indian Ocean are identified from an ocean re-analysis data set of a single year using numerical passive tracers in a transport model. The Somali and Arabian coastal upwelled waters are found to have entirely different spreading pathways in the northern Indian ocean. The former circulates anticyclonically, is mixed vertically, and is advected to the eastern Indian Ocean along the north equatorial region; while the later intrudes into the northern Arabian Sea, circulates anticyclonically and is advected to the south in the central Arabian Sea and then to the eastern Indian Ocean. The seasonal surface mixing by strong monsoon winds and sheared currents due to dominant eddies of the Somali region are found responsible for mixing 25% of Somali upwelled water with the subsurface and affecting the resultant pathways. The effect of mixing is, however, found negligible in the case of Arabian coastal upwelled water pathways. The seasonal reversal of circulation and eddy dominance during the southwest monsoon cause the Somali upwelled water to spread over the northern Indian Ocean faster than the simultaneously upwelled Arabian coastal water.  相似文献   

3.
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.  相似文献   

4.
Particulate fluxes of trace elements (Al, Cd, Co, Cu, Fe, Mn, Ni, P, Ti, V and Zn) in the northeast Atlantic Ocean (three positions at latitudes from 33°N to 54°N along ∼20°W) were measured using time-series sediment traps between March 1992 and September 1994. Significant variabilities of fluxes with season and depth (1000 m to maximum of 4000 m) were observed only for ‘biogenic elements’, such as Cd, Ni, Zn or P. On the other hand, we found a distinct large-scale increase of fluxes into the deep-sea traps to the south for Al, Co, Fe, Mn and V. We attribute this latitudinal gradient to the increasing influence of the Saharan dust plume. The biogenic flux decreased towards the south. This trend was clearly visible for Cd and P only. The fluxes of other ‘nutrient-like’ elements, such as Ni or Zn, exhibited a general decrease between 53°N and 33°N. We compared our sedimentation flux data with published data from the western North Atlantic basins. For this purpose we corrected the deep-sea fluxes of Cu, Mn, Ni and Zn for their lithogenic fractions on the basis of Al, with average crustal material and granitic rocks as references. The comparison indicates that these ‘excess’ fluxes are a factor of at least 2 higher in the western basins for the selected elements. Estimated fluxes are in good agreement with reported atmospheric deposition in the two areas. The noted imbalance between the non-lithogenic atmospheric input of Mn and the determined ‘excess flux’ in the deep northeast Atlantic indicates an additional input in the form of a lateral flux of dissolved Mn(II) species and scavenging onto sinking particles. With respect to the mechanism of sedimentation, a unique behaviour is noticed for the refractory elements Co, Fe, Mn, Ti and V, which were found to correlate with the vertical transport of Al (clay). The ‘excess’ fluxes of Cu, Ni and Zn are linearly related to Corg, whereas the overall relation of Cd to P fluxes exhibits a molar Cd/P ratio of 2.0×10-4, which is close to the ratio in the dissolved fractions in the northeast Atlantic.  相似文献   

5.
2000年南海季风爆发前后西沙海域海-气热量交换特征   总被引:14,自引:3,他引:14       下载免费PDF全文
利用2000年5月6日至6月17日在西沙海域进行的第二次南海海-气通量观测资料,计算了南海季风爆发前后海洋-大气间的辐射收支、感热通量、潜热通量及海洋热量净收支;发现季风爆发后海-气热量交换突然发生变化,其中潜热通量、海洋热量净收支变化尤为显著。讨论了季风爆发前后各种天气过程影响下海-气热量、水汽交换特点和海洋热量净收支变化,说明季风爆发前海洋是一个能量积累过程,季风爆发期海洋是一个能量释放过程,季风中断期海洋是一个能量再积累过程;季风爆发后西南大风期持续时间和强度,强烈影响水汽蒸发量大小,进而影响我国大陆上夏季降水,通过南海与阿拉伯海、孟加拉湾、西太平洋暖池等不同海域资料对比,分析了它们在海-气热量交换上的差别,指出这种差别是爆发后南海SST基本稳定而阿拉伯海、孟加拉湾SST明显降低的主要原因。  相似文献   

6.
Results of organic carbon, total nitrogen, amino acid and hexosamine analyses of samples collected during time-series sediment trap investigations in the Arabian Sea are presented. Samples were taken over a period of years at two depths at each of three locations in the western, central and eastern part of the basin. Seasonal changes in amino acid contents and their spectral distributions show that degradation of organic matter in the water column is reduced during the monsoons, which are the high-flux periods in the western and central Arabian Sea. At the eastern site more degraded material of possibly recycled marine or terrestrial origin reaches the traps during the late summer peak fluxes. The results of hexosamine analyses suggest that bacterial biomass is relatively enriched on particles sinking in the water column and, to a larger extent, at the sediment-water interface. Decomposition between intermediate and deep water results in a loss of 30–40% of total organic carbon and more than 40% of amino acids. Comparison of the measured accumulation rates of organic carbon in sediment traps with those of organic carbon preserved in sediments show that more than 85% is lost before final burial in the sediments. Organic matter preservation in the Arabian Sea is higher than the average for the open ocean; this maybe due to the abundance of refractory organic matter of recycled marine or terrestrial origin.  相似文献   

7.
A new data set of oxygen isotopic composition (δ18O) and salinity (S) of surface and sub-surface waters of the northern Indian Ocean, collected during the period 1987–2009, is presented. While the results are consistent with positive P?E (excess of precipitation over evaporation) over the Bay of Bengal and negative P?E over the eastern Arabian Sea, a significant spatiotemporal variability in the slope (also intercept) of the δ18O–S relation is observed in the Bay; the temporal variability is difficult to discern in the Arabian Sea. The slope and intercept are positively and negatively correlated, respectively, with the annual rainfall over India, a rough measure of river runoff. Both the slope and intercept appear to be sensitive to rainfall; the slope (intercept) is higher (lower) during years of stronger monsoon. The observed variability in the δ18O–S relation implies that caution needs to be exercised in paleosalinity estimations, especially from the Bay of Bengal, based on δ18O of marine organisms.  相似文献   

8.
通过对南海北部和中部两套时间序列沉积物捕获器中的颗粒物样品进行硅藻分析,揭示了南海北部和中部硅藻通量的季节变化规律及其区域差异和各自对东亚季风气候的响应.研究表明在南海北部和中部海域,硅藻通量可以在一定程度上指示海洋初级生产力水平,其中南海北部硅藻通量明显低于中部,这可能与北部颗粒物样品采集期间发生的E1 Ni(n)o...  相似文献   

9.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

10.
Data are presented for the concentrations of Al, Fe, Mn, Ni, Co, Cr, V, Cu, Zn, Pb and Cd in aerosols collected over two contrasting regions of the Indian Ocean. These are: (1) the northern Arabian Sea (AS), from which samples were collected in the northeast monsoon, during which the region receives an input of crustal material from the surrounding arid land masses; and (2) the Tropical Southern Indian Ocean (TSIO), a remote region from which samples were collected from air masses for which there were no large-scale up-wind continental aerosol sources. The TSIO samples can be divided into two populations: Population I aerosols, collected from air masses which have probably impinged on Madagascar, and Population II aerosols, which have been confined to open-ocean regions to the south of the area.The data indicate that there are strong latitudinal variations in the chemical signatures of aerosols over the Indian Ocean. The input of crustal material to the Arabian Sea gives rise to an average Al concentration of about 1000 ng m−3 of air in the northeast monsoon regime. As a result, the concentrations of all trace metals are relatively high, and the values of crustal enrichment factors are less than 10 for most metals, in the AS aerosols. In contrast, TSIO Population II ‘open-ocean southern air’ sampled during the southwest monsoon season, has an average Al concentration of only about 10 ng m−3 of air. Trace metal concentrations in the TSIO ‘open-ocean southern air’ during the southwest monsoon season are representative of ‘clean’ remote marine air and are generally similar to those reported over the central North Pacific.Mineral dust concentrations over the Indian Ocean decrease in a north to south direction, from about 15–20 μg m−3 of air in the extreme north to about 0.01–0.25 μg m−3 of air in the far south. The deposition of mineral dust over the northern Arabian Sea can account for approximately 75% of the non-carbonate material incorporated into the underlying sediments.In the Arabian Sea the dissolved atmospheric inputs of all the trace metals, with the exception of Cu and Co, exceed those from fluvial run-off by factors which range from 9.6 for Pb to 1.6 for Cr.  相似文献   

11.
The downward flux of Mn through the water column was directly measured using sediment traps. The Mn flux from the bottom sediment to the water column, and the removal rate of Mn in the bottom water were estimated from Mn gradients in the bottom water. The sediment traps were deployed more than ten times at the same station in Funka Bay, Japan. The trapped settling matter and filtered suspended matter samples were analyzed for Mn, Fe, Al and ignition loss. The observed downward flux of Mn through the water column in winter (1.3–2.8 μg/cm2 /day) was generally an order of magnitude larger than that in summer (0.13–0.45 μg/cm2 /day), and the Mn fluxes for both seasons were also greater than the accumulation rate of Mn in the bottom sediments (0.10 μg/cm 2/day). More Al was contained in the trapped settling matter than in the suspended matter, while Mn showed the opposite behavior. The Fe/Mn ratio of the residual fraction (obtained by subtracting the sediment component of the settling matter) was rather well correlated with the corresponding ratio in suspended matter. Settling particles are expected to scavenge suspended matter during their passage through the water column. The flux of Mn across the sediment—water interface was estimated from its vertical profiles in the water column to be 0.1–0.3 μg/cm2 day. The residence time of Mn in bottom water was about one to several months. These results suggest that Mn is actively recycled between the water column and the sediments of the coastal sea.  相似文献   

12.
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be obeerved. It is the reason why SSTs can keep stableover the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal aftermonsoon onset.  相似文献   

13.
As a part of the US-JGOFS Arabian Sea Process Study (ASPS), we deployed a mooring array consisting of 16 Mark-7G time-series sediment traps on five moorings, each in the mesopelagic and interior depths in the western Arabian Sea set along a transect quasi-perpendicular to the Omani coast. The array was deployed for 410 days to cover all monsoon and inter-monsoon phases at 4.25-, 8.5- or 17-day open-close intervals, all of which were synchronized at 17-day periods. Total mass flux, fluxes of organic, inorganic carbon, biogenic Si and lithogenic Al (mg m−2 day−1) were obtained from samples representing 667 independent periods. The average total mass fluxes estimated in the interior depth along this sediment trap array at Mooring Stations 1–5 (MS-1–5) during 1994-5 ASPS were 147, 235, 221, 164 and 63 mg m−2 day−1, respectively. Mass fluxes during the southwest (SW) Monsoon were always larger than during the northeast (NE) Monsoon at all divergent zone stations, but the difference was insignificant at the oligotrophic station, MS-5. Four major pulses of export flux events, two each at NE Monsoon and SW Monsoon, were observed in the divergent zone; these events dominated in quantity production of the annual mass flux, but did not dominate temporally. Export pulses were produced by passing eddies and wind-curl events, but the direct processes to produce individual export blooms at each station were diversified and highly complex. The onset of these pulses was generally synchronous throughout the divergent zone. Export pulses associated with specific biogeochemical signatures such as the ratio of elevated biogenic Si to inorganic carbon indicate a supply of deep water to the euphotic layer in varying degrees. The variability of mass fluxes at the oligotrophic station, MS-5, also represented both monsoon events, but with far less amplitude and without notable export pulses.  相似文献   

14.
Biogeochemical ocean-atmosphere transfers in the Arabian Sea   总被引:2,自引:2,他引:2  
Transfers of some important biogenic atmospheric constituents, carbon dioxide (CO2), methane (CH4), molecular nitrogen (N2), nitrous oxide (N2O), nitrate , ammonia (NH3), methylamines (MAs) and dimethylsulphide (DMS), across the air–sea interface are investigated using published data generated mostly during the Arabian Sea Process Study (1992–1997) of the Joint Global Ocean Flux Study (JGOFS). The most important contribution of the region to biogeochemical fluxes is through the production of N2 and N2O facilitated by an acute, mid-water deficiency of dissolved oxygen (O2); emissions of these gases to the atmosphere from the Arabian Sea are globally significant. For the other constituents, especially CO2, even though the surface concentrations and atmospheric fluxes exhibit extremely large variations both in space and time, arising from the unique physical forcing and associated biogeochemical environment, the overall significance in terms of their global fluxes is not much because of the relatively small area of the Arabian Sea. Distribution and air–sea exchanges of some of these constituents are likely to be greatly influenced by alterations of the subsurface O2 field forced by human-induced eutrophication and/or modifications to the regional hydrography.  相似文献   

15.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

16.
阿拉伯海东南海域盐度收支的季节变化   总被引:4,自引:0,他引:4  
采用SODA海洋同化产品的月平均资料,本文分析了阿拉伯海东南海域表层盐度的季节变化特征,发现局地海面淡水通量不能解释盐度的变化。两个典型区域的表层海水盐度收支分析表明,海洋的平流输送是造成阿拉伯海东南海域盐度冬季降低、夏季升高的主要原因,而淡水通量仅在夏季印度西侧沿岸区域造成盐度降低。冬季,东北季风环流将孟加拉湾北部的低盐水沿同纬度输送到阿拉伯海,然后向北输送,使表层海水盐度降低;夏季,西南季风环流把阿拉伯海西北部的高盐水向南、向东输送,使阿拉伯海东南海域盐度升高。受地理位置因素的影响,阿拉伯海东南海域表层盐度的变化冬季明显强于夏季。  相似文献   

17.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

18.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

19.
This article presents the results of long-term studies of the dynamics of carbonate parameters and air–sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from–2.4 to–22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.  相似文献   

20.
Settling particles play an important role in transporting organic carbon from the surface to the deep ocean. It is known that major components of settling particles are biogenic silicates (opal), biogenic carbonate (CaCO3), lithogenic clays and organic matter. Since each component aggregates and/or takes in organic carbon, all of these components have the ability to transport particulate organic carbon (POC) to the interior of the ocean. In this study, sediment trap experiments were carried out in four areas of the western North Pacific (including a marginal sea). Factors are proposed that correlate the composition of settling particles with POC flux. Annual mean organic carbon fluxes at 1 km depth in the western North Pacific Basin, Japan Sea, Hidaka Basin and northern Japan Trench were found to be 14.9, 18.1, 13.0 and 6.6 mg/m2/day, respectively. Organic carbon flux in the western North Pacific was greater than that in the Eastern North Pacific (7.4), the Equatorial Pacific (4.2), the Southern Ocean (5.8) and the Eastern North Atlantic (1.8). In the western North Pacific, it was calculated that 52% of POC was carried by opal particles. Opal is known to be a major component even in the Eastern North Pacific and the Southern Ocean, and the opal fluxes in these areas are similar to those in the western North Pacific. However, the organic carbon flux that was carried by opal particles (OCopalflux) in the western North Pacific was greater than that in the Eastern North Pacific and the Southern Ocean. These results indicate that the ability of opal particles to transport POC to the deep ocean in the western North Pacific is greater than that in the other areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号