首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The realization of North Atlantic Deep Water (NADW) replacement in the deep northern Indian Ocean is crucial to the “conveyor belt” scheme. This was investigated with the updated 1994 Levitus climatological atlas. The study was performed on four selected neutral surfaces, encompassing the Indian deep water from 2000 to 3500 m. The Indian deep water comprises three major water masses: NADW, Circumpolar Deep Water (CDW) and North Indian Deep Water (NIDW). Since NADW flowing into the southwest Indian Ocean is largely blocked by the ridges (the Madagascar Ridge in the east and Davie Ridge in the north in the Mozambique Channel) and NIDW is the only source in the northern Indian Ocean that cannot provide a large amount of volume transport, CDW has to be a major source for the Indian deep circulation and ventilation in the north. Thus the question of NADW replacement becomes that of how the advective flows of CDW from the south are changed to be upwelled flows in the north—a water-mass transformation scenario. This study considered various processes causing motion across neutral surfaces. It is found that dianeutral mixing is vital to achieve CDW transformation. Basin-wide uniform dianeutral upwelling is detected in the entire Indian deep water north of 32°S, somewhat concentrated in the eastern Indian Ocean on the lowest surface. However, the integrated dianeutral transport is quite low, about a net of 0.2 Sv (1 Sv=106 m3 s-1) across the lowermost neutral surface upward and 0.4 Sv across the uppermost surface upward north of 32°S with an error band of about 10–20% when an uncertainty of half-order change in diffusivities is assumed. Given about 10–15% of rough ridge area where dianeutral diffusivity could be about one order of magnitude higher (10-4 m2 s-1) due to internal-wave breaking, the additional amount of increased net dianeutral transport across the lowest neutral surface is still within that error band. The averaged net upward transport in the north is matched with a net downward transport of 0.3 Sv integrated in the Southern Ocean south of 45°S across the lowermost surface. With the previous works of You (1996. Deep Sea Research 43, 291–320) in the thermocline and You (Journal of Geophysical Research) in the intermediate water combined, a schematic dianeutral circulation of the Indian Ocean emerges. The integrated net dianeutral upwelling transport shows a steady increase from the deep water to the upper thermocline (from 0.2 to 4.6) north of 32°S. The dianeutral upwelling transport is accumulated upward as the northward advective transport provided from the Southern Ocean increases. As a result, the dianeutral upwelling transport north of 32°S can provide at least 4.6 Sv to south of 32°S from the upper main thermocline, most likely to the Agulhas Current system. This amount of dianeutral upwelling transport does not include the top 150–200 m, which may contribute much more volume transport to the south.  相似文献   

2.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

3.
Chlorofluorocarbon (CFC) inventories provide an independent method for calculating the rate of North Atlantic Deep Water (NADW) formation. From data collected between 1986 and 1992, the CFC-11 inventories for the major components of NADW are: 4.2 million moles for Upper Labrador Sea Water (ULSW), 14.7 million moles for Classical Labrador Sea Water (CLSW), 5.0 million moles for Iceland–Scotland Overflow Water (ISOW), and 5.9 million moles for Denmark Strait Overflow Water (DSOW). The inventories directly reflect the input of newly formed water into the deep Atlantic Ocean from the Greenland, Iceland and Norwegian Seas and from the surface of the subpolar North Atlantic during the time of the CFC-11 transient. Since about 90% of CFC-11 in the ocean as of 1990 entered the ocean between 1970 and 1990, the formation rates estimated by this method represent an average over this time period. Formation rates based on best estimates of source water CFC-11 saturations are: 2.2 Sv for ULSW, 7.4 Sv for CLSW, 5.2 Sv for ISOW (2.4 Sv pure ISOW, 1.8 Sv entrained CLSW, and 1.0 Sv entrained northeast Atlantic water) and 2.4 Sv for DSOW. To our knowledge, this is the first calculation for the rate of ULSW formation. The formation rate of CLSW was calculated for an assumed variable formation rate scaled to the thickness of CLSW in the central Labrador Sea with a 10 : 1 ratio of high to low rates. The best estimate of these rates are 12.5 and 1.3 Sv, which average to 7.4 Sv for the 1970–1990 time period. The average formation rate for the sum of CLSW, ISOW and DSOW is 15.0 Sv, which is similar to (within our error) previous estimates (which do not include ULSW) using other techniques. Including ULSW, the total NADW formation rate is about 17.2 Sv. Although ULSW has not been considered as part of the North Atlantic thermohaline circulation in the past, it is clearly an important component that is exported out of the North Atlantic with other NADW components.  相似文献   

4.
5.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

6.
The water mass structure and circulation of the continental shelf waters west of the Antarctic Peninsula are described from hydrographic observations made in March–May 1993. The observations cover an area that extends 900 km alongshore and 200 km offshore and represent the most extensive hydrographic data set currently available for this region. Waters above 100–150 m are composed of Antarctic Surface Water and its end member Winter Water. Below the permanent pycnocline is a modified version of Circumpolar Deep Water, which is a cooled and freshened version of Upper Circumpolar Deep Water. The distinctive signature of cold and salty water from the Bransfield Strait is found at some inshore locations, but there is little indication of significant exchange between Bransfield Strait and the west Antarctic Peninsula shelf. Dynamic topography at 200 m relative to 400 m indicates that the baroclinic circulation on the shelf is composed of a large, weak, cyclonic gyre, with sub-gyres at the northeastern and southwestern ends of the shelf. The total transport of the shelf gyre is 0.15 Sv, with geostrophic currents of order 0.01 m s-1. A simple model that balances across-shelf diffusion of heat and salt from offshore Upper Circumpolar Deep Water with vertical diffusion of heat and salt across the permanent pycnocline into Winter Water is used to explain the formation of the modified Circumpolar Deep Water that is found on the shelf. Model results show that the observed thermohaline distributions across the shelf can be maintained with a coefficient of vertical diffusion of 10-4 m2 s-1 and horizontal diffusion coefficients for heat and salt of 200 and 1200 m2 s-1, respectively. When the effects of double diffusion are included in the model, the required horizontal diffusion coefficients for heat and salt are 200 and 400 m2 s-1, respectively.  相似文献   

7.
A transect of CTD profiles crossing the North Atlantic Current (NAC) along WOCE line ACM6 near 42.5°N during August 1–7, 1993, provides geostrophic shear velocity profiles, which were absolutely referenced using simultaneous POGO transport float measurements and velocity measurements from a ship-mounted acoustic doppler current profiler (ADCP). The NAC absolute transport was 112±23×106 m3 s−1, which includes a portion of the transport of the Mann Eddy, a large permanent anticyclonic eddy commonly adjacent to the NAC. The NAC transport estimated relative to a level of no motion at the bottom would have underestimated the true total absolute transport by 20%. A surprisingly large 58×106 m3 s−1 flowed southward just inshore of the NAC. This flow, centered near 1500 dbars about 200 km offshore of the shelf-break, was fairly barotropic with a peak velocity of greater than 20 cm s−1, and the water mass characteristics were of Labrador Sea Water. These absolute transport observations suggest southward recirculation inshore of the NAC at 42.5°N and a stronger NAC than has previously been observed.  相似文献   

8.
Chlorofluoromethanes (CFMs) F-11 and F-12 were measured during August 1991 and November 1992 in the Romanche and Chain Fracture Zones in the equatorial Atlantic. The CFM distributions showed the two familiar signatures of the more recently ventilated North Atlantic Deep Water (NADW) seen in the Deep Western Boundary Current (DWBC). The upper maximum is centered around 1600 m at the level of the Upper North Atlantic Deep water (UNADW) and the deeper maximum around 3800 m at level of the Lower North Atlantic Deep Water (LNADW). These observations suggest a bifurcation at the western boundary, some of the NADW spreading eastward with the LNADW entering the Romanche and the Chain Fracture Zones. The upper core (σ1.5=34.70 kg m-3) was observed eastward as far as 5°W. The deep CFM maximum (σ4=45.87 kg m-3), associated with an oxygen maximum, decreased dramatically at the sills of the Romanche Fracture Zone: east of the sills, the shape of the CFM profiles reflects mixing and deepening of isopycnals. Mean apparent water “ages” computed from the F-11/F-12 ratio are estimated. Near the bottom, no enrichment in CFMs is detected at the entrance of the fracture zones in the cold water mass originating from the Antarctic Bottom Water flow.  相似文献   

9.
A reduced estimate of Agulhas Current transport provides the motivation to examine the sensitivity of Indian Ocean circulation and meridional heat transport to the strength of the western boundary current. The new transport estimate is 70 Sv, much smaller than the previous value of 85 Sv. Consideration of three case studies for a large, medium and small Agulhas Current transport demonstrate that the divergence of heat transport over the Indian Ocean north of 32°S has a sensitivity of 0.08 PW per 10 Sv of Agulhas transport, and freshwater convergence has a sensitivity of 0.03×109 kg s−1 per 10 Sv of transport. Moreover, a smaller Agulhas Current leads to a better silica balance and a smaller meridional overturning circulation for the Indian Ocean. The mean Agulhas Current transport estimated from time-series current meter measurements is used to constrain the geostrophic transport in the western boundary region in order to re-evaluate the circulation, heat and freshwater transports across 32°S. The Indonesian Throughflow is taken to be 12 Sv at an average temperature of 18°C. The constrained circulation exhibits a vertical–meridional circulation with a net northward flow below 2000 dbar of 10.1 Sv. The heat transport divergence is estimated to be 0.66 PW, the freshwater convergence to be 0.54×109 kg s−1, and the silica convergence to be 335 kmol s−1. Meridional transports are separated into barotropic, baroclinic and horizontal components, with each component conserving mass. The barotropic component is strongly dependent on the estimated size of the Indonesian Throughflow. Surprisingly, the baroclinic component depends principally on the large-scale density distribution and is nearly invariant to the size of the overturning circulation. The horizontal heat and freshwater flux components are strongly influenced by the size of the Agulhas Current because it is warmer and saltier than the mid-ocean. The horizontal fluxes of heat and salt penetrate down to 1500 m depth, suggesting that warm and salty Red Sea Water may be involved in converting the intermediate and upper deep waters which enter the Indian Ocean from the Southern Ocean into warmer and saltier waters before they exit in the Agulhas Current.  相似文献   

10.
The North Atlantic Deep Western Boundary Current (DWBC) was surveyed at the Blake Outer Ridge over 14 days in July and August 1992 to determine its volume transport and to investigate its bottom boundary layer (BBL). This site was chosen because previous investigations showed the DWBC to be strong and bottom-intensified on the ridge’s flanks and to have a thick BBL. The primary instrument used was the Absolute Velocity Profiler, a free-falling velocity and conductivity–temperature–depth device. In two sections across the width of the DWBC, volume transports of 17±1 Sv and 18±1 Sv were measured for all water flowing equatorward below a potential temperature of 6°C (1 Sv=1×106 m3 s-1). Transport values were derived using both absolute velocities and AVP-referenced geostrophic velocities and were the same within experimental uncertainty. Good agreement was found between our results and historical ones when both were similarly bounded and referenced. Although this was a short-term survey, the mean of a 9-day time series of absolute velocity profiles was the same as the means of year-long current-meter records at three depths in the same location. A turbulent planetary BBL was found everywhere under the current. The thickness of the bottom mixed layer (BML), where concentrations of density, nutrients, and suspended sediments were vertically uniform, was asymmetrical across the current and up to 5 times thicker than the BBL. There was no velocity shear above the BBL within the thicker BMLs, and the across-slope density gradient was very small. The extra-thick BML is perhaps maintained by a combination of processes, including turbulence, downwelling Ekman transport, a weak up-slope return flow above the BBL, and buoyant convection from the BBL into the BML. The frictional bottom stress was mostly balanced by a down-stream change in the current’s external potential energy evidenced by a drop in the velocity core of the current.  相似文献   

11.
The circulation and transport of Antarctic Bottom Water (σ4<45.87) in the region of the Vema Channel are studied along three WOCE hydrographic lines, the geostrophic velocities referenced to previously published direct current measurements. The primary supply of water to the deep Vema Channel is from the Argentine Basin's deep western boundary current, with no indication of an inflow from the southeast. In the northern Argentine Basin, detachment of lower North Atlantic Deep Water from the continental slope is associated with a deep thermohaline front near 34°S. To the north of this front, the upper part of the AABW bound for the Vema Channel (σ4<46.01) exhibits a significant NADW influence. Further modification of the throughflow water occurs near 30°30′S, where the channel orientation changes by ∼50°. Southward flow of bottom water on the eastern flank of the Vema Channel, amounting to ∼1.5 Sv, represents a significant countercurrent to the deep channel transport. Inclusion of this countercurrent reduces the net flow of AABW through the Vema Channel from 3.2±0.7 to 1.7±1.1 Sv. Water properties imply that the near-zero net flow over the Santos Plateau results from a near-closed cyclonic circulation fed by the deep Vema Channel throughflow. A disruption of the northward boundary current in the upper AABW (lower circumpolar water) is required by this flow pattern. The extension of the cyclonic circulation on the Santos Plateau enters the Brazil Basin as a ∼1 Sv flow distinct from the outflow in the Vema Channel Extension (6.2 Sv). The high magnitude of the latter suggests a southward recirculation of bottom water near the western boundary to the north of the region of study.  相似文献   

12.
Dissolved organic carbon (DOC) data are presented from three meridional transects conducted in the North Atlantic as part of the US Climate Variability (CLIVAR) Repeat Hydrography program in 2003. The hydrographic sections covered a latitudinal range of 6°S to 63°N along longitudes 20°W (CLIVAR line A16), 52°W (A20) and 66°W (A22). Over 3700 individual measurements reveal unprecedented detail in the DOC distribution and systematic variations in the mesopelagic and bathypelagic zones of the North Atlantic basin. Latitudinal gradients in DOC concentrations combined with published estimates of ventilation rates for the main thermocline and North Atlantic Deep Water (NADW) indicate a net DOC export rate of 0.081 Pg C yr−1 from the epipelagic zone into the mesopelagic and bathypelagic zones. Model II regression and multiple linear regression models applied to pairwise measures of DOC and chlorofluorocarbon (CFC-12) ventilation age, retrieved from major water masses within the main thermocline and NADW, indicate decay rates for exported DOC ranging from 0.13 to 0.94 μmol kg−1 yr−1, with higher DOC concentrations driving higher rates. The contribution of DOC oxidation to oxygen consumption ranged from 5 to 29% while mineralization of sinking biogenic particles drove the balance of the apparent oxygen utilization.  相似文献   

13.
This study deals with the inflow of warm and saline Atlantic water to the Nordic Seas, an important factor for climate, ecology and biological production in Northern Europe. The investigations are carried out along the Svinøy standard hydrographic section, which cuts through the Atlantic inflow to the Norwegian Sea just to the north of the Faroe–Shetland Channel. In the Svinøy section, we consider the Atlantic inflow as water with salinity above 35.0, corresponding to temperatures above 5°C. Current measurements for the period April 1995 to February 1999, positioned on the continental slope in water depths between 490 and 990 m, are combined with VM-ADCP, SeaSoar-CTD and CTD transects to estimate long-term transports and spatial features of the Atlantic inflow. A well-defined two-branched Norwegian Atlantic Current was revealed with an eastern and a western branch. The eastern branch appears as a narrow, topographically trapped, near barotropic, 30–50 km wide current, with a maximum speed of 117 cm/s. The western branch is also about 30–50 km wide, and appears as an unstable frontal jet about 400 m deep with a maximum speed of 87 cm/s. Between these two prominent branches, the observations show an average eddy field with a recirculation to the southwest. Transport estimates from the current records in the eastern branch show an annual mean inflow of 4.2 Sv (1 Sv=106 m3/s) with variation on a 25 h time scale ranging from −2.2 to 11.8 Sv, and between 2.0 and 8.0 Sv on a monthly time scale. The current record in the core of the eastern branch mirrors the estimated transport on a monthly time scale with a correlation coefficient of 0.86. Except for the year 1995–1996, this nearly four-year current record shows evidence of a systematic annual cycle with summer to winter variations in the proportion of 1 to 2. Comparison between the North Atlantic Oscillation (NAO) index and the current record on a three-month time scale shows a strong connection for most of the period. This reflects the strong coupling between the westerly winds and the inflow. The baroclinic transport west of the eastern branch, including the frontal jet, is inferred from hydrography in combination with VM-ADCP transects, and has a total mean of 3.4 Sv. Thus, investigations to date indicate a yearly mean Atlantic inflow of 7.6 Sv in the Svinøy section.  相似文献   

14.
A water-mass analysis is carried out in Fram Strait, between 77.15 and 81.15°N, based on three-dimensional large-scale potential temperature and salinity distributions reconstructed from the MIZEX 84 hydrographic data collected in summer 1984. Combining these distributions with the geostrophic flow field derived from the same data in a companion paper (Schlichtholz and Houssais, 1999), the heat, fresh water and volume transports are estimated for each of the water masses identified in the strait. Twelve water masses are selected based on their different origins. Among them, the Polar Water (PW) enters Fram Strait from the Arctic Ocean both over the Greenland Slope and over the western slope of the Yermak Plateau. In the Atlantic Water (AW) range, four modes with distinct geographical distributions are indentified. In the Deep Water range, the Eurasian Basin Deep Water (EBDW) is confined to the Lena Trough and to the Molloy Deep area where it is involved in a cyclonic circulation. The warm and shallower mode of the Norwegian Sea Deep Water (NSDW), concentrated to the west, is mainly seen as an outflow from the Arctic Ocean while the cold and deeper mode, essentially observed to the east, enters the strait from the Greenland Sea. Apart from the EBDW, there is a tendency for all water masses of polar origin to flow along the Greenland Slope. The two most abundant water masses, the AW and the NSDW, occupy as much as 67% of the total water volume. The southward net transport of PW through Fram Strait is about 1 Sv at 78.9°N. At the same latitude, the net transport of AW is southward and equal to about 1.7 Sv. Only the transport of the warm mode (AWw) is northward, amounting to 0.2 Sv. The overall net outflow of the Deep Waters to the Greenland Sea is about 2.6 Sv. Two upper water masses, the fresh (AWf) and the cold (AWc) mode of the AW, and one deep-water mass, the NSDW, appear to be produced in the strait, with production rates, between 77.6 and 79.9°N, of about 0.2, 1.0 and 1.7 Sv, respectively. A southward net fresh-water transport through the strait of about 2000 km3 yr−1 (relative to a salinity of 34.93) is mainly due to the PW. The net heat transport relative to −0.1°C is northward, but undergoes a rapid northward decrease, suggesting an area-averaged surface heat loss of 50–100 W m−2 in the strait.  相似文献   

15.
The northward outflow of cold, dense water from the Weddell Sea into the world ocean basins plays a key role in balancing the global heat budget. We estimate the geostrophic flow patterns in the northwestern Weddell Sea using box inverse methods applied to quasi-synoptic hydrographic data collected during the Brazilian DOVETAIL 2000 and 2001 austral summer cruises. The analysis is focused on the variations of the deep Weddell Sea outflow into the Scotia Sea within boxes that bound the main deep gaps over the South Scotia Ridge. To determine the geostrophic volume transports in each box, mass, salt, and heat are conserved within neutral density layers that are not in contact with the atmosphere. Implementing the inverse model and using property anomaly equations weighted by the flow estimate uncertainty our results are consistent with those reported in the literature. A bottom triangle extrapolation method is introduced, which improves the estimated property fluxes through hydrographic sections. In the austral summer of 2000 the transports of Weddell Sea Deep Water (WSDW) through the Philip Passage, Orkney Passage, and southwestern Bruce Passage are 0.01±0.01, 1.15±0.33, and 1.03±0.23 Sv (1 Sv=106 m3 s−1, >0 is northward), respectively. After extrapolation within bottom triangles these transports increase to 0.12±0.03, 3.48±1.81, and 1.20±2.16 Sv. Analysis of the hydrographic data reveal distinct oceanographic conditions over the Philip Passage region, with evidence of mesoscale meanders, warmer and saltier Warm Deep Water (WDW) and colder WSDW observed in 2001 than in 2000. Despite these differences the WSDW transport does not present a significant variation between 2000 and 2001. The WSDW transports through the Philip Passage in 2001 are 0.012±0.001 and 0.113±0.001 Sv after extrapolation within bottom triangles. The circulation derived from the inversion in the austral summer of 2001 suggests a sharp weakening of the barotropic cyclonic flow in the Powell Basin, which may be due to northerly and northeasterly winds associated with an atmospheric low-pressure center located west of the Antarctic Peninsula. We suggest that similar variations in atmospheric forcing may explain changes in the intensity of the cyclonic flow observed in the northwestern Weddell Sea and Powell Basin.  相似文献   

16.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

17.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

18.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

19.
The Wyville Thomson Ridge forms part of the barrier to the meridional circulation across which cold Nordic Sea and Arctic water must traverse to reach the Atlantic Ocean. Overflow rates across the ridge are variable (but can be dramatic at times), and may provide a subtle indicator of significant change in the circulation in response to climate change. In spring 2003, a series of CTD sections were conducted during a large overflow event in which Norwegian Sea Deep Water (NSDW) cascaded down the southern side of the ridge into the Rockall Trough at a rate of between 1 and 2 Sv. The NSDW was partially mixed with overlying North Atlantic Water (NAW), and comprised about 1/3rd of the cascading water. The components of NAW and NSDW in the overflow were sufficiently large that there must have been a significant divergence of the inflow through the Faroe-Shetland Channel, and of the outflow through the Faroe Bank Channel.As the plume descended, its temperature near the sea bed warmed by over 3 °C in about a day. Although the slope was quite steep (0.03), the mean speed of the current (typically 0.36 m s−1) was too slow for significant entrainment of NAW to occur (the bulk Richardson number was of order 5). However, very large overturns (up to 50 m) were evident in some CTD profiles, and it is demonstrated from Thorpe scale estimates that the warming of the bottom waters was due to mixing within the plume. It is likely that some of the NSDW had mixed with NAW before it crossed the ridge. The overflow was trapped in a gully, which caused it to descend to great depth (1700 m) at a faster rate, and with less modification due to entrainment, than other overflows in the North Atlantic. The water that flowed into the northern part of the Rockall Trough had a temperature profile that ranged from about 3 to 8 °C. Water with a temperature of >6 °C probably escaped into the Iceland Basin, between the banks that line the north-western part of the Trough. Colder water (< 6 °C) must have travelled down the eastern side of the Rockall Bank, and may have had a volume flux of up to 1.5 Sv.  相似文献   

20.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号