首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   

2.
A one-dimensional ecosystem model with two explicit size classes of phytoplankton was developed for the NE subarctic Pacific to investigate variations in the export of organic particles to the ocean interior due to potential changes in the environment. Specifically, the responses of the planktonic ecosystem to permanent removal of iron limitation and to warming (of 2 and 5 °C) were explored. The ecosystem model consists of five components (small and large phytoplankton, microzooplankton, detritus and nitrogen), and includes grazing by mesozooplankton that varies in time according to long-term observations at Ocean Station Papa (OSP). The model addresses the role of iron limitation on phytoplankton growth and includes temperature dependence of physiological rates. The ecosystem model was forced with annual wind and solar heating from OSP. The model best reproduced the low chlorophyll high nitrate conditions of the NE subarctic Pacific when both small and large phytoplankton were limited by iron such that their maximum specific growth rate was reduced by 10 and 70%, respectively. Sensitivity analysis showed that model results depended on the value of the iron limitation parameter of large phytoplankton (LFe-L) and the grazing parameters of micro- and mesozooplankton. To explore the effect of iron limitation, simulations were carried out varying the iron limitation parameters while maintaining the nitrogen flux at the base of the model constant and the grazing pressure by mesozooplankton unchanged. In the warming case, simulations were carried out increasing ocean temperatures by 2° and 5 °C applied only to the ecological components, the flux of nitrate at the base of the model was increased to obtain a steady annual cycle, and grazing by mesozooplankton remained constant. When compared with the standard case, model simulations indicated that both permanent removal of iron limitation and warming cause changes in food web structure and the carbon cycle. The response was more dramatic in the iron-replete case where the phytoplankton community structure in spring changed from one dominated by pico- and nanoplankton to one dominated by large phytoplankton, and primary production increased until it consumed all the external nutrient (N) supply to the upper layer. However, reducing iron deficiency actually led to lower annual primary production due to a decrease in the regeneration of nitrogen in the euphotic zone. These changes in food web structure influenced the magnitude, composition and seasonal cycle of sinking particles.  相似文献   

3.
Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.  相似文献   

4.
IronEx I demonstrated a rapid and marked response by grazers to Fe-induced increases in phytoplankton stocks, which was thought to be due, in part, to arrested vertical migration by mesozooplankton. These observations prompted an investigation of the relative roles of Fe enrichment and grazing pressure in controlling the magnitude of phytoplankton stocks in the NE subarctic Pacific. The grazing impact of increased mesozooplankton abundance in response to a localised Fe-induced enhancement of algal biomass was simulated by performing in vitro (6 d) grazer perturbation experiments in May 1994 and September 1995 at Ocean Station Papa (OSP), when pelagic mesozooplankton stocks are usually at their annual maximum and submaximal, respectively. Manipulations were designed to increase mesozooplankton stocks in 25L carboys after various lag-times corresponding to grazing pressure greater or equal to that in situ, and to monitor changes in chlorophyll a levels as a proxy for grazing pressure. At the onset of the experiments, in vitro mesozooplankton abundances were comparable to those in situ. Despite the addition of mesozooplankton to selected Fe-enriched carboys in May after 24, 48 and 72 h, corresponding to ca. two-fold increases in their abundances, chlorophyll a increased to ca. 2 μg l−1 in all treatments. In September, chlorophyll a levels increased five-fold to 2 μg l−1 after 4 days – but little thereafter – in the presence of up to ten-fold higher animal abundances (added at t=0) than observed in situ. Thus, Fe-induced increases in diatom growth rates were sufficiently high to escape both initial and additional grazing pressure. If and when Fe is supplied to this region, it is unlikely that mesozooplankton can respond and graze down the resulting elevated algal abundance. Theoretical calculations, based on algal growth and grazing rate data from May in this study, suggested that a greater than five-fold increase in mesozooplankton abundance, after a 48-h lag, is required to exert sufficient grazing pressure to prevent Fe-mediated increases in algal biomass. These findings are discussed in relation to the scale dependency of such events, and the pelagic ecology of other High Nitrate Low Chlorophyll regions.  相似文献   

5.
This overview compares and contrasts trends in the magnitude of the downward Particulate Organic Carbon (POC) flux with observations on the vertical profiles of biogeochemical parameters in the NE subarctic Pacific. Samples were collected at Ocean Station Papa (OSP, 50°N, 145°W), between 18–22 May 1996, on pelagic stocks/rate processes, biogenic particle fluxes (drifting sediment traps, 100–1000 m), and vertical profiles of biogeochemical parameters from MULVFS (Multiple Unit Large Volume Filtration System) pumps (0–1000 m). Evidence from thorium disequilibria, along with observations on the relative partitioning of particles between the 1–53 μm and >53 μm classes in the 50 m mixed layer, indicate that there was little particle aggregation within the mixed layer, in contrast to the 50–100 m depth stratum where particle aggregation predominated. Vertical profiles of thorium/uranium also provided evidence of particle decomposition occuring at depths ca. 150 m; heterotrophic bacteria and mesozooplankton were likely responsible for most of this POC utilisation. A water column carbon balance indicated that the POC lost from sinking particles was the predominant source of carbon for bacteria, but was insufficient to meet their demands over the upper 1000 m. While, the vertical gradients of most parameters were greatest just below the mixed layer, there was evidence of sub-surface increases in microbial viability/growth rates at depths of 200–600 m. The C:N ratios of particles intercepted by free-drifting and deep-moored traps increased only slightly with depth, suggesting rapid sedimentation even though this region is dominated by small cells/grazers, and the upper water column is characterised by long particle residence times (>15 d), a fast turnover of POC (2 d) and a low but constant downward POC flux.  相似文献   

6.
We investigated seasonal changes in carbon demand and flux by mesozooplankton communities at subtropical (S1) and subarctic sites (K2) in the western North Pacific Ocean to compare the impact of mesozooplankton communities on the carbon budget in surface and mesopelagic layers. Fecal pellet fluxes were one order higher at K2 than at S1, and seemed to be enhanced by copepod and euphausiid egestion under high chlorophyll a concentrations. The decrease in pellet volume and the lack of any substantial change in shape composition during sink suggest a decline in fecal pellet flux due to coprorhexy and coprophagy. While respiratory and excretory carbon by diel migrants at depth (i.e., active carbon flux) was similar between the two sites, the actively transported carbon exceeded sinking fecal pellets at S1. Mesozooplankton carbon demand in surface and mesopelagic layers was higher at K2 than S1, and an excess of demand to primary production and sinking POC flux was found during some seasons at K2. We propose that this demand was met by supplementary carbon sources such as feeding on protozoans and fecal pellets at the surface and carnivory of migrants at mesopelagic depths.  相似文献   

7.
《Oceanologica Acta》1999,22(1):57-66
Observations made during a “La Niña” situation (April–May 1996) in the equatorial Pacific upwelling, between 165° E and 150° W, show the classic deepening of hydrological isolines from east to west, resulting in zonal gradients for surface temperature and macronutrients. However, contrasting with such a gradient, no clear zonal variation could be seen for integrated planktonic biomasses and carbon fluxes, namely: chlorophyll a, bacterial abundances, particulate organic phosphorus, mesozooplankton ash-free dry weight, primary production, and the sinking flux of particulate organic carbon (POC). Moreover, mean values of these parameters along the zonal equatorial transect, are not significantly different from those of a 7-day-long time series station made at 0°, 150° W in October 1994 during an El Niño period. Such a steady zonal distribution of planktonic parameters seems to be characteristic of equatorial Pacific upwelling west of the Galapagos Islands so that the spatial distributions of nutrient concentrations and planktonic biomass appear to be uncoupled. This is consistent with the High Nutrient-Low Chlorophyll (HNLC) concept, in which primary production is not controlled directly by macronutrient concentrations. The lack of zonal gradient also suggests that carbon budget of the equatorial Pacific is primarily controlled by oscillations in the zonal and meridian extension of the HNLC area, rather than by values of planktonic biomasses and carbon fluxes within the upwelled water, which are quite constant.  相似文献   

8.
A previous study based on data from a NE Atlantic site provided evidence, using an existing foodweb/vertical-flux modelling approach, that the size-structure of the phytoplankton community — rather than primary production — can be the dominant control on downward particulate organic carbon (POC) flux. In order to assess whether taking community structure into account can also provide more reliable estimates of downward POC flux in other oceanic provinces, epipelagic observations (mainly size-fractionated primary production, biomass, community structure data and heterotrophic bacterial production) and POC flux data from deep-moored sediment traps were collated from the six different ocean regions for which suitable data are available. At each site the epipelagic data were used in conjunction with two standard versions of the foodweb/vertical-flux model (one permits direct sinking of large ungrazed algae out of surface waters, the other does not) and published empirical depth/POCflux algorithms to predict the POC flux to the deep ocean. Predictions were also made using published primary-production/POC-flux algorithms, and the two sets of predictions were compared to the deep-ocean POC flux measurements. While the version of the foodweb/ vertical-flux model permitting the direct sinking of ungrazed algae provided the most reliable predictor of POC flux for five of the six sites, no conventional algorithm provided comparable predictions for more than two sites. The reliability of these predictions is discussed in the context of recent modelling studies that explore the extent to which flow fields in the water column overlying deep-moored sediment traps confound attempts to relate particle flux measurements to observations of surface-water processes. The present study suggests that the sinking of ungrazed large cells, probably diatoms, may be the key determinant of the magnitude of the downward POC flux in a variety of ocean regions. Planned ocean-observing programmes may provide sufficient epipelagic data to allow this approach to be used to improve the accuracy of basin-scale estimates of downward POC flux and hence reduce the uncertainty of the magnitude of this flux within the oceanic carbon budget.  相似文献   

9.
Sinking particles were collected every 4 h with drifting sediment traps deployed at 200 m depth in May 1995 in a 1-D vertical system during the DYNAPROC observations in the northwestern Mediterranean sea. POC, proteins, glucosamine and lipid classes were used as indicators of the intensity and quality of the particle flux. The roles of day/night cycle and wind on the particle flux were examined. The transient regime of production from late spring bloom to pre-oligotrophy determined the flux intensity and quality. POC fluxes decreased from, on average, 34 to 11 mg m−2 d−1, representing 6–14% of the primary production under late spring bloom conditions to 1–2% under pre-oligotrophic conditions. Total protein and chloroplast lipid fluxes correlated with POC and reflected the input of algal biomass into the traps. As the season proceeded, changes in the biochemical composition of the exported material were observed. The C/N ratio rose from 7.8 to 12. Increases of serine (10–28% of total proteins), total lipids (7–9 to 14–28% of POC) and reserve lipids (1–5 to 5–22% of total lipids) were noticeable, whereas total protein content in POC decreased (20–27 to 18–7%). N-acetyl glucosamine, a tracer of fecal pellet flux, showed that zooplankton grazing was a major vector of downward export during the decaying bloom. Against this background pattern, episodic events specifically increased the flux, modifying the quality and the settling velocity of particles. Day/night signals in biotracers (POC, N-acetyl glucosamine, protein and chloroplast lipids) showed that zooplankton migrations were responsible for sedimentation of fresh material through fast sinking particles (V=170–180 m d−1) at night. Periodic signatures of re-processed material (high lipolysis and bacterial biomass indices) suggested that other zooplankton fecal pellets or small aggregates, probably of lower settling velocities (V<170 m d−1), contributed to the flux during calm periods. At the beginning of the experiment, during the development of a prymnesiophyte bloom in the upper layers, the sterol signal with no periodicity enabled us to estimate high particle settling velocities (⩾600 m d−1) likely related to large aggregate formation. A wind event increased biotracer fluxes (POC, protein, chloroplast lipids). The rapid transmission of surface signals through extremely fast sinking particles could be a general feature of particle fluxes in marine areas unaffected by horizontal advection.  相似文献   

10.
The taxonomic composition and types of particles comprising the downward particle flux were examined during the mesoscale artificial iron fertilisation experiment LOHAFEX. The experiment was conducted in low-silicate waters of the Atlantic Sector of the Southern Ocean during austral summer (January–March 2009), and induced a bloom dominated by small flagellates. Downward particle flux was low throughout the experiment, and not enhanced by addition of iron; neutrally buoyant sediment traps contained mostly faecal pellets and faecal material apparently reprocessed by mesozooplankton. TEP fluxes were low, ≤5 mg GX eq. m−2 d−1, and a few phytodetrital aggregates were found in the sediment traps. Only a few per cent of the POC flux was found in the traps consisting of intact protist plankton, although remains of taxa with hard body parts (diatoms, tintinnids, thecate dinoflagellates and foraminifera) were numerous, far more so than intact specimens of these taxa. Nevertheless, many small flagellates and coccoid cells, belonging to the pico- and nanoplankton, were found in the traps, and these small, soft-bodied cells probably contributed the majority of downward POC flux via mesozooplankton grazing and faecal pellet export. TEP likely played an important role by aggregating these small cells, and making them more readily available to mesozooplankton grazers.  相似文献   

11.
Our understanding of the role that euthecosome pteropods play in the Southern Ocean is relatively limited. The aim of the present study was thus to examine the role of the sub-Antarctic species, Limacina retroversa, in the pelagic ecosystem of the Indian sector of the Polar Frontal Zone. Results from the study indicate that while L. retroversa might not dominate total mesozooplankton densities (the mesozooplankton community was always dominated by copepods, averaging >75% throughout the entire investigation), with an average contribution of only 5% to total mesozooplankton numbers, the species is capable of contributing substantially to total mesozooplankton grazing impact, out-grazing the dominant copepods (Calanus simillimuis, Ctenocalanus spp., Clausocalanus spp. and Oithona similis) 33% of the time. During the investigation, L. retroversa exhibited grazing impacts contributing to between 2% and 89% of the total per day. In addition to their exceptionally high grazing rates, our data suggest a coupling of L. retroversa densities to phytoplankton biomass. In fact, a significant decline in pteropod densities was recorded coinciding with extremely low phytoplankton concentrations. During the investigation the size structure of the pteropod community was predominantly made up of small- and medium-sized individuals; suggesting that spawning had taken place in summer during all 3 years. Although this trend was observed across all three surveys, the relative contributions of the three size classes varied significantly between the surveys, indicating a variable spawning period, similar to that observed in the northern hemisphere. In addition, reduced food availability during one of the surveys appeared to have resulted in delayed spawning as low relative abundances of small individuals and high relative abundances of large individuals were recorded during that survey.  相似文献   

12.
Mesozooplankton abundance, community structure and copepod grazing on phytoplankton were examined during the austral spring 1997 and summer 1998 as part of the US JGOFS project in the Pacific sector of the Antarctic polar front. Mesozooplankton abundance and biomass were highest at the polar front and south of the front. Biomass increased by 1.5–2-times during the course of the study. Calanoides acutus, Calanus propinquus, C. simillimus, Rhincalanus gigas and Neocalanus tonsus were the dominant large copepods found in the study. Oithona spp and pteropods were numerically important components of the zooplankton community. The copepod and juvenile krill community consumed 1–7% of the daily chlorophyll standing stock, equivalent to 3–21% of the daily phytoplankton production. There was an increased grazing pressure at night due to both increased gut pigment concentrations as well as increases in zooplankton numbers. Phytoplankton carbon contributed a significant fraction (>50%) of the dietary carbon for the copepods during spring and summer. The relative importance of phytoplankton carbon to the diet increased south of the polar front, suggested that grazing by copepods could be important to organic carbon and biogenic silica flux south of the polar front.  相似文献   

13.
Biogeochemical cycles of N and Si were examined in the surface mixed layer during the mesoscale iron-enrichment (IE) experiment in the high-nutrient low-chlorophyll (HNLC) western subarctic Pacific (SEEDS-II). Although the IEs increased nitrate uptake, silicic acid utilization was not stimulated. The nitrate drawdown in the iron-patch (IN-patch, 140.3 mmol m−2 in the surface mixed layer, 0–30 m) was only 25% of the initial inventory, which was 1/3–2/5 of the previous IE experiments in the subarctic Pacific. This relatively weak response of nutrient drawdown to IEs was due to the high biomass of mesozooplankton (MZ) dominated by copepod Neocalanus plumchrus. Feeding of MZ (247.2 mmol m−2 during Day 0–21 from the first IE) in the IN-patch was higher than the nitrate drawdown and prevented further development of the phytoplankton bloom. In the later period of the experiment (Day 14–21), the increase in the feeding activity and resultant decrease in phytoplankton biomass induced the accumulation of dissolved organic nitrogen (DON) and ammonium. Among total growth of MZ (81.6 mmol N m−2), 89% (72.8 mmol N m−2) was transported to the depth by the ontogenetic downward migration of N. plumchrus. Although silicic acid drawdown was not increased by the IEs, Si export flux increased by 2.7 times. The increase in Si export was also due to the increase in MZ, which egested faecal pellets with higher Si:N ratio and faster sinking speed than diatoms. The export efficiency (78% of new production) and total amount of export flux (143.8 mmol N m−2, 1392 mmol C m−2) were highest records within the IE experiments despite weak responses of nutrient drawdown to the IE. During SEEDS-II, the high biomass of MZ reduced the phytoplankton response and nutrient drawdown to the IEs but via grazing and ontogenetic vertical migration accelerated the export flux as well as accumulations of dissolved forms of N. Results of the present and previous IE experiments indicate that the ecosystem and biogeochemical responses to IEs in the HNLC region are quite sensitive to the ecosystem components, especially for grazers of diatoms such as copepods and heterotrophic dinoflagellates. More attention needs to be paid to the ecosystem components and their biogeochemical functions as well as physical and chemical properties of the ecosystems in order to hindcast or forecast the impacts of changes in atmospheric iron deposition.  相似文献   

14.
Taxonomic composition, size composition, standing stock, and chemical composition of mesozooplankton were determined to examine the contribution of their fecal pellets to the vertical flux of organic carbon at the outside, the edge, and the center of the warm core ring. The warm core ring significantly affects not only their taxonomic composition and size composition but also their standing stock and chemical composition. The zooplankton at the center of the warm core ring was characterized by the absence of carnivores at the top of the size-trophic relation and filter feeding planktonic tunicates at the bottom. Zooplankton carbon biomass at the outside of the ring was one-third less than that at the center of the ring. The vertical flux of fecal pellets obtained from the pellet volume (12.3 mgC m−2d−1) contributed 19 to 96% of the flux (13 to 64 mgC m−2 d−1) estimated from the body carbon and the fecal pellet production rate. The estimated flux of fecal pellets was 6 to 27% of vertical carbon flux (236 mgC m−2d−1) determined by the sediment traps. Microscopic determination of fecal pellets and plankton in the sediment trap samples indicated high grazing activity during the sinking process. Those observations might suggest that particles other than fecal pellets contributed significantly to the vertical carbon flux and fecal pellets were settled directly without loss or being recycled within the surface mixed layer.  相似文献   

15.
北太平洋副极地海区作为全球海洋三个高营养盐低叶绿素(high nutrient and low chlorophyll, HNLC)海区之一, 其浮游植物生长受到微量元素铁的限制。对于开阔大洋, 大气沉降是海洋表层铁的一个重要来源, 铁元素沉降进入海洋后能够促进浮游植物生长, 进而引起海洋初级生产力和生物泵的响应。本文利用SPRINTARS(Spectral Radiation-Transport Model for Aerosol Species)模式的时长为20a的日均大气沉降数据, 对北太平洋海区大气沉降的时空特征进行了分析。结果表明, 进入北太平洋海区的大气沉降量为26.81Tg·a-1, 并且存在显著的季节变化: 春季最高, 冬季最低, 5月份进入海洋的沉降量达到峰值。大气沉降主要来源于陆地区域, 在风场的驱动下向海洋传输, 因此大气沉降量的空间分布呈现出西高东低的特征。本文以2010年8月中旬卫星观测到的一次强沙尘(即高大气沉降量)事件为例, 研究了大气沙尘的传播路径。进一步结合2001年4月9—12日及2008年4月20—22日的沙尘事件, 分析了西北太平洋K2站位(47°N, 160°E)附近海域海洋初级生产力对大气沉降——沙尘事件的响应。结果表明, 三次沙尘事件后, K2站位的颗粒有机碳通量、叶绿素浓度均有明显增加, 即沙尘事件对北太平洋副极区海洋初级生产力存在促进作用。  相似文献   

16.
海洋中型浮游动物的选择性摄食对浮游植物群落的控制   总被引:5,自引:0,他引:5  
海洋中型浮游动物的选择性摄食很大程度上影响着浮游植物种群的变化,控制着海洋初级生产力的节律、规模和归宿。从海洋中型浮游动物选择性摄食对有害藻华的控制、中型浮游动物的选择性摄食机制、中型浮游动物选择性摄食的研究方法和中型浮游动物的选择性摄食模型四个方面探讨了中型浮游动物选择性摄食对控制浮游植物种群演替的贡献,为进一步预测和控制有害藻华发生提供科学依据。  相似文献   

17.
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.  相似文献   

18.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   

19.
Biomass distribution and trophodynamics in the oceanic ecosystem in the Oyashio region are presented and analyzed, combining the seasonal data for plankton and micronekton collected at Site H since 1996 with data for nekton and other animals at higher trophic levels from various sources. The total biomass of biological components including bacteria, phytoplankton, microzooplankton, mesozooplankton, micronekton, fishes/squids and marine birds/mammals was 23 g C m−2, among which the most dominant component was mesozooplankton (34% of the total), followed by phytoplankton (28%), bacteria (15%) and microzooplankton (protozoans) (14%). The remainder (9%) was largely composed of micronekton and fish/squid. Marine mammals/birds are only a small fraction (0.14%) of the total biomass. Large/medium grazing copepods (Neocalaus spp., Eucalanus bungii and Metridia spp.) accounted for 77% of the mesozooplankton biomass. Based on information about diet composition, predators were assigned broadly into mean trophic level 3–4, and carbon flow through the grazing food chain was established based on the estimated annual production/food consumption balance of each trophic level. From the food chain scheme, ecological efficiencies as high as 24% were calculated for the primary/secondary production and 21% for the secondary/tertiary production. Biomass and production of bacteria were estimated as 1/10 of the respective values for phytoplankton at Site H, but the role of the microbial food chain remains unresolved in the present analysis. As keystone species in the oceanic Oyashio region, Neocalanus spp. are suggested as a vital link between primary production and production of pelagic fishes, mammals and birds.  相似文献   

20.
Accumulating evidence points to the importance of mesoscale eddies in supplying nutrients to surface waters in oligotrophic gyres. However, the nature of the biological response and its evolution over time has yet to be elucidated. Changes in mesozooplankton community composition due to eddy perturbation also could affect biogeochemical cycling. Over the course of two summers we sampled seven eddies in the Sargasso Sea. We focused on and followed a post-phytoplankton bloom cyclonic eddy (C1) in 2004 and a blooming mode-water anticyclonic eddy (A4) in 2005. We collected zooplankton in all eddies using a Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) and quantified biomass (>0.15 mm, in five size fractions) from 0 to 700 m over nine discrete depth intervals. Zooplankton biomass (>0.5 mm) in the upper 150 m was similarly enhanced at night for the periphery of C1 and the center of A4 at 0.514 g m−2 and 0.533 g m−2, respectively, compared to outside (0.183 g m−2 outside C1 and 0.197 g m−2 outside A4). Despite minimal chlorophyll a enhancement and dominance by picoplankton in C1, zooplankton biomass increased most for the largest size class (>5 mm). Gut fluorescence for euphausiids and large copepods was also elevated on the C1 periphery. In A4, peak biomass occurred at eddy center coincident with peak primary production, but was highly variable (changing by >3-fold) over time, perhaps resulting from the dense, but patchy distribution of diatom chains in this region. Shifts in zooplankton community composition and abundance were reflected in enhancement of fecal pellet production and active transport by diel vertical migration in eddies. Inside C1 the flux of zooplankton fecal pellets at 150 m in June 2004 was 1.5-fold higher than outside the eddy, accounting for 9% of total particulate organic carbon (POC) flux. The flux of fecal pellets (mostly from copepods) increased through the summer in eddy A4, matching concurrent increases in zooplankton <2 mm in length, and accounting for up to 12% of total POC flux. Active carbon transport by vertically migrating zooplankton was 37% higher on the periphery of C1 and 74% higher at the center of A4 compared to the summer mean at the Bermuda Atlantic Time-series Study (BATS) station. Despite contrasting responses by the phytoplankton community to cyclonic and mode-water eddies, mesozooplankton biomass was similarly enhanced, possibly due to differential physical and biological aggregation mechanisms, and resulted in important zooplankton-mediated changes in mesoscale biogeochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号