首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A time-series sediment trap was deployed from October 2007 to May 2011 in the western subtropical Pacific with the aim of understanding the seasonal and inter-annual variability on particle flux in response to El Niño-Southern Oscillation (ENSO) events. Total mass fluxes varied from 3.04 mg m−2 day−1 to 31.1 mg m−2 day−1, with high fluxes during February–April and low fluxes during other months. This seasonal variation was also characterized by a distinct change in the CaCO3 flux between the two periods. The marked increase in particle flux during February–April may be attributed to enhanced biological productivity in surface waters caused by strong wind-driven mixing in response to the western North Pacific monsoon system. The 2009/10 strong El Niño was accompanied by a significant reduction in particle flux, whereas the La Niña had no recognizable effect on particle flux in the subtropical Pacific. In particular, in the mature phase of the 2009/10 strong El Niño, the fluxes of organic carbon and biogenic silica decreased by 70–80% compared with those during the normal period, implying that the El Niño acted to suppress biological productivity in surface waters. The suppression of biological productivity during the 2009/10 strong El Niño is attributed to the decrease in precipitation due to the shift in the western Pacific warm pool. This finding is opposite that of other studies of the western equatorial Pacific, where El Niño events were observed to result in an increase in biological productivity and particle flux. The difference in particle flux between the western equatorial and subtropical Pacific is attributed to the regional differences in oceanic and atmospheric circulation systems generated by the strong El Niño.  相似文献   

2.
Phytoplankton samples were collected from the equatorial Pacific (10°S to 10°N along 155°E) in June 1992 as part of the Australian contribution to the JGOFS program. Chlorophyll and carotenoid pigments were measured by HPLC, and a PC-based computer program (CHEMTAX) was used to estimate the contribution of 9 algal classes to the total chlorophyll a concentration in 9 separate depth bands at each location. This cruise occurred in the middle of the prolonged 1991/1993 El Niño, and the results are compared with similar data from a cruise in October 1990 which occurred before this El Niño but after the 1988/1989 La Niña.Changes in the pigment : chlorophyll a ratios appeared consistent across algal classes and, apart from some minor exceptions, consistent between cruises. Pigments involved in light-harvesting generally increased relative to chlorophyll a with increasing depth, whereas the ratio for photoprotective pigments (e.g. diadinoxanthin) usually decreased with depth. The zeaxanthin concentration per cell for cyanobacteria decreased with depth in the surface 75 m during 1992 as would be expected for a photoprotective pigment.Based on their contribution to the total chlorophyll a concentration, haptophytes, prochlorophytes, cyanobacteria (Synechococcus) and chlorophytes were the dominant algal classes in 1992. The chlorophyte contribution to chlorophyll a in 1992 (14.8%) was almost double that in 1990 (7.8%). This increase was largely at the expense of the cyanobacteria and haptophytes, which both decreased significantly. The increase in chlorophytes in 1992 was particularly noticeable in the surface waters south of the equator at about 4°S, where there was evidence of upwelling.  相似文献   

3.
Ocean Station Papa (OSP, 50°N 145°W) in the NE subarctic Pacific is characterised as high nitrate low chlorophyll (HNLC). However, little is known about the spatial extent of these HNLC waters or the phytoplankton dynamics on the basin scale. Algal biomass, production and size-structure data are presented from winter, spring and summer between 1992 and 1997 for five stations ranging from coastal to open-ocean conditions. The inshore stations (P04–P16) are characterised by the classical seasonal cycle of spring and late summer blooms (production >3 g C m−2 d−1), diatoms are not Fe-stressed, and growth rate is probably controlled by macronutrient supply. The fate of the phytoplankton is likely sedimentation by diatom-dominated spring blooms, with a pelagic recycling system predominating at other times. The offshore stations (P20/OSP) display low seasonality in biomass and production (OSP, mean winter production 0.3 g C m−2 d−1, mean spring/summer production 0.85 g C m−2 d−1), and are dominated by small algal cells. Low Fe availability prevents the occurrence of diatom blooms observed inshore. The main fate of phytoplankton is probably recycling through the microbial food web, with relatively low sedimentation compared to inshore. However, the supply of macro- and micro-nutrients to the coastal and open ocean, respectively, may vary between years. Variability in macro-nutrient supply to the coastal ocean may result in decreased winter reserve nitrate, summer nitrate limitation, subsequent floristic shifts towards small cells, and reduced primary production. Offshore, higher diatom abundances are occasionally observed, perhaps indicating episodic Fe supply. The two distinct oceanic regimes have different phytoplankton dynamics resulting in different seasonality, community structure and fate of algal carbon. These differences will strongly influence the biogeochemical signatures of the coastal and open-oceanic NE subarctic Pacific.  相似文献   

4.
It is demonstrated that weakened wind mixing and strengthened water column stratification resulted in the anomalously low sea surface chlorophyll in the northern South China Sea during the 1997–1998 El Niño event. Remotely sensed sea surface temperature, wind and chlorophyll, which were validated by shipboard observations at the SouthEast Asian Time-series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS) provided the basis for this study. During the 1997–1998 winter at the SEATS station, the sea surface temperature was elevated by about 2 °C above the climatological mean, while the wind speed of the northeast monsoon was reduced from a climatological mean of 9.4 to 6.8 m/s. The concentration of surface chlorophyll-a dropped from 0.2 to 0.1 mg/m3. The monthly area-averaged integrated primary production estimated for the northern SCS area (112–119°E, 15–21°N) was reduced by about 40% of the normal winter value. Under the anomalously high sea surface temperature and weak monsoon, the mixed-layer depth would have been reduced from an average of 65 to 45 m and the nutrients in the mixed layer would have been reduced by half, according to observations at the SEATS station in more recent years. During the 1997–1998 El Niño event, the onset of warming in the northern SCS lagged behind that in the eastern equatorial Pacific by about 5 months and lingered for 11 months. This course of change resembled that of the western Pacific warm pool region. However, contrary to the northern SCS, the sea surface chlorophyll was enhanced in the warm pool region during the event, probably mainly because of the uplifted nutricline. Unlike the eastern equatorial Pacific, the dramatic recovery of biological production did not happen in the SCS in the summer of 1998. These distinctive biogeochemical responses reflect fundamental differences between the SCS and the equatorial Pacific in terms of upper water column dynamics.  相似文献   

5.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

6.
Particulate organic carbon (POC) concentrations from 0 to 1000 m were quantified in size-fractionated particulate matter samples obtained by the multiple unit large volume in situ filtration system (MULVFS) in 1996 and 1997 along the 1600 km long “line P” transect from continental slope waters near southern Vancouver Island to Ocean Station PAPA (OSP, 50°N, 145°W). Regression of in situ POC vs. beam attenuation coefficient, c, from a simultaneously deployed 1-m pathlength SeaTech transmissometer gave slope, intercept and r2 values of 6.15±0.19×10−5 m−1 (nmol C l−1)−1, 0.363±0.003 m−1, and 0.951 (n=145), respectively. This result agreed within several percent of calibrations obtained from two 2600-km-long transects of the equatorial Pacific in 1992 (Bishop, 1999). Data from other, more frequently deployed transmissometers were standardized against the 1-m instrument, and the combined optical data set was used to document POC variability at finer spatial and temporal scales than could be sampled directly using either conventional water bottle casts or MULVFS. Published bottle POC vs. c relationships show much more variability and remain problematic. Along the line P transect in the salinity-stratified upper 100 m, POC isolines shoaled from winter to summer in concert with seasonal stratification. At the same time, POC was progressively enriched in subeuphotic zone waters to depths greater than 500 m. Near-surface POC fields sampled in the winter time showed strong temporal POC variability over time scales of days as well as between years. POC concentrations at OSP in February 1996 were higher than those found at any other time of year. Less variability was found along line P in other seasons. In May 1996, kilometer-scale spatial variability of POC at OSP was small; dawn vs. dusk variations of c were used to calculate 0–100 m POC turnover times shorter than 6 d. Calculations also suggest that 25–50% of primary productivity was expressed as dissolved organic carbon at OSP in May 1996.  相似文献   

7.
Data from seven oceanographic cruises in the southern Gulf of California from 1997 to 2002 are used to describe the thermohaline variability and the geostrophic circulation. Baroclinic patterns exhibited spatial and temporal variability. A deepening of isotherms at the center of the section was evident in February 1999, suggesting anticyclonic flow. In May 1998 and November 1997, cyclonic flow was suggested by shoaling of isotherms at the center of the section. Other cruises showed alternating cores of flow into and out of the Gulf (August 1998, September 1997 and October 2002). Neither a seasonal nor a spatial pattern in geostrophic flows was apparent, suggesting that the exchange of waters between the cyclonic flow of Pescadero basin and the interior of the Gulf is complex. Relatively high salinities were recorded during most of the cruises indicating that Gulf of California Water (GCW) was present most of the year. Higher salinities were observed during winter and spring, although during summer, relatively high and low salinities were both observed as surface and subsurface cores. Temperature and salinity characteristics of California Current waters were observed only in August 1995 when they reached as far north as Cerralvo Island at ∼50 dbar. During El Niño conditions in November 1997, a mixed layer (∼70 dbar) and deepening of the thermocline (∼50 dbar) characterized anomalous conditions; during this cruise an asymmetric salinity pattern was observed with low salinities characteristic of Tropical Surface waters at the center and east of the section, while maximum salinities (34.9<S<35.0) and Gulf waters were located in an 80 km wide core next to the Baja California Sur shelf as far north as San Jose Island.  相似文献   

8.
We have hypothesized that the weekly/biweekly passage of winter storms in the subtropical open ocean destabilizes the water column leading to pulsed NO3? inputs, resulting in new production that is not accounted for in most annual estimates. This paper presents data on nitrogen and carbon cycling in the Sargasso Sea at approximately daily resolution, during the period prior to seasonal stratification in 2004 and 2005; these data permit us to assess the importance of winter storms for introducing NO3? and the contribution of these inputs to annual new and export production. The two sampling years were in stark contrast to each other with 2004 characterized by periods of relative calm between winter storms, and 2005 characterized by nearly continuous storm activity. As a result, temporal variability in mixed layer depth (MLD) and euphotic zone [NO3?] were very different between years. MLDs in 2004 increased to >150 m in response to the passage of storms and then rapidly shoaled to <100 m leading to the pulsed injection of NO3? (~100 nmol l?1) into the lower half of the euphotic zone, while in 2005 MLDs were consistently >300 m and euphotic zone [NO3?]>100 nmol l?1. Despite the very different [NO3?], rates of daily NO3? uptake were similar from year to year because of significant nocturnal uptake in 2004. Similar rates of new production did not translate into similar rates of particulate nitrogen and carbon export however, as observed export from the upper 200 m was 2–5-fold greater in 2004 than in 2005. Furthermore, the decrease of particulate nitrogen and carbon flux with depth between 200 and 400 m in 2004 was substantially lower than in 2005; this is consistent with the observed biological response in which diatoms and coccolithophores exhibited rapid growth following pulsed NO3? inputs in 2004. A combination of data from the Bermuda Testbed Mooring, which provides a longer temporal record than the cruise, and the observations presented in this study show that in the winter of 2004, there were 8–10 storm events that likely resulted in pulsed NO3? inputs. Summed over all the events, new production prior to seasonal stratification was estimated to be ~0.12–0.18 mol N m?2 or ~14–21% of current annual estimates.  相似文献   

9.
In this study we relate spatial and temporal variation in the organic composition of suspended particles to current conceptual models of open-ocean particle cycling. Suspended particles in surface (0–200 m) and midwaters (200–1000 m) of the equatorial Pacific Ocean were collected during the 1992 US JGOFS Equatorial Pacific (EqPac) program. Samples collected during El Niño (Survey I) and normal conditions (Survey II) were analyzed for pigment, amino acid, fatty acid, and neutral lipid concentrations and compositions. Principal Components Analysis (PCA) and other statistical methods were used to assess changes in particulate organic composition between Surveys I and II, over 24° of latitude, from 15 to 850 m depth, and to compare our compositional data with previously published data from EqPac sinking particles. These analyses indicated that surface suspended particles (0–200 m) were similar in composition to surface ocean phytoplankton and were less degraded than particles sinking out of the euphotic zone (105 m). The organic composition of suspended particles in surface waters varied with latitudinal and El-Niño-induced changes in phytoplankton assemblages. Midwater suspended particles (200–1000 m) contained labile phytodetrital material derived from particles exiting the euphotic zone (105 m). However, labile organic constituents of midwater suspended particles were increasingly degraded by microbes or consumed by midwater metazoans with depth. The increase in degradation state observed for midwater suspended particles may also have been caused by dilution of deeper (450–850 m) suspended particle pools with more refractory material originating from fast-sinking particles, e.g., fecal pellets. However, the mechanism controlling midwater particle degradation state varied with flux regime; dilution of midwater suspended particles dominated only in the higher flux regime found at equatorial latitudes (5°N–5°S) during Survey II (normal conditions). In summary, it is apparent that organic matter alteration in midwaters, and not cycling within the euphotic zone, has the larger effect on organic composition of suspended particles in the deep equatorial Pacific Ocean.  相似文献   

10.
New productivity measurements using the 15N tracer technique were conducted in the north-eastern (NE) Arabian Sea during six expeditions from 2003 to 2007, mostly in winter. Our results indicate that the NE Arabian Sea has a potential for higher new productivity during blooms. Nitrate uptake by plankton is the highest during late winter. New productivity and f-ratios in the NE Arabian Sea are mainly controlled by hydrodynamic and meteorological parameters such as wind strength, sea surface temperature (SST), mixed layer depth (MLD) and mixed layer nitrate. Deepening of the mixed layer supplies nitrate from below, which supports the observed nitrogen uptake. Higher f-ratios during blooms indicate the strong coupling between surface layers and sub-surface layers. Deepening of mixed layer below 100 m (from its inter-monsoon value between 30 and 40 m) transferred often more than 100 mmol N–NO3 m? 2 into the surface layers from below. The observed winter blooms in the region are supported by such input and are sustained for more than a month. Higher new productivity has been found in late winter, whereas transport of nitrate is maximum in early winter. In general, new production varies progressively during winter. Diurnal cycling of the mixed layer could be the reason for the under utilization of entrained nitrate during early winter. New productivity values and wind strength show significant differences during Feb–Mar 03 and Feb–Mar 04. These differences indicate that the winter cooling and parameters related the biological productivity also vary inter-annually. However, the difference between the new productivity values between Feb–Mar 03 and Feb–Mar 04 is much lower than the difference between Jan 03 and Feb–Mar 03. The results suggest that amplitude of seasonal variation is higher than the inter-annual variation in the region. During spring, Fickian diffusive fluxes of nitrate into the surface layer range from 0.51 to 1.38 mmol N–NO3 m? 2 day? 1, and can account for 67% and 78% of the observed nitrogen uptake in the coastal and open ocean regions, respectively. We document the intra-seasonal and inter-annual variations in new productivity during winter and identify sources of nitrate which support the observed productivity during spring.  相似文献   

11.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   

12.
Previously published estimates of the area of the Peru upwelling ecosystem vary by more than an order of magnitude. In an effort to improve this situation, we used a 24-month sequence of SeaWiFS satellite images of chlorophyll in the surface water off Peru from 5°S to 18.5°S during September 1997–August 1999 to estimate the size of the nutrient enhanced productive habitat associated with the upwelling. The first 12-month period was marked by El Niño conditions, the second by strong upwelling. Using a chlorophyll threshold of >1.0 mg m−3 to define the limit of the productive habitat resulted in maximum area estimates of 120×103 km2 during September 1997–August 1998, and 220×103 km2 during September 1998–August 1999. The latter result is consistent with an area estimate we calculated using total fishery landings and a regression relating fishery yields per unit area to annual primary production per unit area. Although year-to-year variation in the annual mean size of the upwelling ecosystem must be significant, even discounting El Niño events, our analysis has shown that at least five of the extreme earlier values are not good estimates of the size of the productive habitat. We may now be close to knowing the average size of the ecosystem to within a factor of about two.  相似文献   

13.
Measurements of dissolved inorganic carbon (DIC), pH, total alkalinity (TA), and partial pressure of CO2 (pCO2) were conducted at a total of 25 stations along four cross shelf transects in the East China Sea (ECS) in January 2008. Results showed that their distributions in the surface water corresponded well to the general circulation pattern in the ECS. Low DIC and pCO2 and high pH were found in the warm and saline Kuroshio Current water flowing northeastward along the shelf break, whereas high DIC and pCO2 and low pH were mainly observed in the cold and less saline China Coastal Current water flowing southward along the coast of Mainland China. Difference between surface water and atmospheric pCO2 (ΔpCO2), ranging from ~ 0 to ? 111 μatm, indicated that the entire ECS shelf acted as a CO2 sink during winter with an average flux of CO2 of ?13.7 ± 5.7 (mmol C m? 2 day? 1), and is consistent with previous studies. However, pCO2 was negatively correlated with temperature for surface waters lower than 20 °C, in contrast to the positive correlation found in the 1990s. Moreover, the wintertime ΔpCO2 in the inner shelf near the Changjiang River estuary has appreciably decreased since the early 1990s, suggesting a decline of CO2 sequestration capacity in this region. However, the actual causes for the observed relationship between these decadal changes and the increased eutrophication over recent decades are worth further study.  相似文献   

14.
We examine the diatom flux collected between November 1996 and April 1998, and between January and October 1999 at the time-series study site in the Cariaco Basin, off Venezuela. The temporal dynamics of the total diatom flux mainly reflect seasonal, trade wind-driven changes in surface hydrographic conditions, including changes associated with the El Niño/Southern Oscillation (ENSO). Highest diatom fluxes (>1.8×107 valves m?2 d?1) coincided with the upwelling season in boreal winters 1997 and 1999. Changes in the composition of the diverse diatom community reflect variations in hydrographic and atmospheric conditions, as well as nutrient availability. Cyclotella litoralis, a neritic diatom typical of nutrient-rich waters, along with resting spores of several Chaetoceros spp., dominate during periods of high diatom flux, following trade wind-driven upwelling. During the boreal summers of 1997 and 1999, nutrient-depleted surface waters resulted in low diatom fluxes (<5.2×106 valves m?2 d?1). The seasonal pattern of high diatom production was altered from July 1997 through April 1998, when the ENSO affected the Caribbean Sea. The occurrence of ENSO during boreal winter 1997–1998 caused a major change in the qualitative composition of the diatom assemblage: the highly diverse diatom assemblage was composed of a mixture of pelagic (Nitzschia bicapitata, Thalassionema nitzschioides var. inflata, T. nitzschioides var. parva, Azpeitia tabularis) and coastal species (C. litoralis, resting spores of Chaetoceros, T. nitzschioides var. nitzschioides). The simultaneous occurrence of neritic and open-ocean diatoms during boreal summers reflects the fact that the Cariaco Basin is influenced by both offshore and coastal waters, with considerable short-term variability in hydrographic conditions and nutrient availability.  相似文献   

15.
16.
Extensive measurements of nitrous oxide (N2O) were made in the central and eastern Arabian Sea during the northeast monsoon (February–March), intermonsoon (April–May) and southwest monsoon (July–August) seasons. The latitudinal and longitudinal variations, along with seasonal changes with respect to winter convection and coastal upwelling, are clearly discernible. Vertical profiles collected down to 1000 m show that the Arabian Sea water column is supersaturated with N2O at all depths. However, N2O consumption at intermediate depths, coincident with the oxygen minimum and associated with sediment–water interfaces, and in the denitrifying zone, coincident with NO-2 secondary maxima, are also apparent. The N2O concentration varies from ∼10 nM near the surface to about 80 nM in the secondary peak region (≈800 m). Interrelationships with chemical parameters suggest nitrification to be the main process for the production of N2O in the oceanic water. Plots of apparent oxygen utilization vs production of N2O indicate a consistent linear relationship for AOU between 0 and 200 μM.  相似文献   

17.
《Marine Chemistry》2007,103(1-2):84-96
An isotope dilution method has been developed to determine by gas chromatography/mass spectrometry (GC/MS) the rates of ammonium and nitrite oxidation in severely oligotrophic marine waters. The method is based on the formation of sudan-1 from nitrite, or from nitrate following reduction to nitrite. Samples were collected by solid phase extraction and purified by high performance liquid chromatography (HPLC). A deuterated sudan-1 internal standard was synthesized, purified by HPLC and used for quantitative analysis. Concentrations of NO2 and NO3 were generally < 2 nmol/kg and < 5 nmol/kg respectively, typical of oligotrophic surface waters, and turnover times for the inorganic N pools ranged from < 1 day to > 10 days. Significant rates of nitrification were measured in the surface oligotrophic ocean, with rates of ammonium and nitrite oxidation generally within the range of 10–500 pmol/kg/h. Consequently, a significant proportion of daily NO3 assimilation by marine phytoplankton is regenerated, and not new. In a case study of the oligotrophic gyre of the North Atlantic, the influence of NH4+ regeneration and nitrification on f-ratio values suggests that in the oligotrophic ocean, f-ratio values may be significantly, and sometimes grossly, overestimated.  相似文献   

18.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

19.
Using objectively analyzed seasonal fields of dissolved oxygen content, percent oxygen saturation, and apparent oxygen utilization (AOU), we describe the large-scale seasonal variability of oxygen for the Atlantic and Pacific Oceans in the upper 400 m. The winter minus summer basin zonal averages of AOU reveal a two-layer feature in both the Atlantic and the Pacific, for both hemispheres. Biological activity and seasonal stratification in the summer give the upper 50–75 m of the water column in each basin a lower AOU in summer than winter. Greater mixing of upper ocean waters in winter gives the 75–400 m layer lower AOU values in that season. The basin integral seasonal volumes of oxygen for both the North Atlantic and the North Pacific mirror what is occurring in the atmosphere, indicating that there is a seasonal flux of oxygen across the air–sea interface. Winter total O2 volume in the ocean is above the annual mean; the summer volume is below. Larger seasonal differences in the total O2 content are observed in the North Atlantic Ocean than the North Pacific Ocean. A seasonal net outgassing (SNO) of 8.3×1014 moles O2 is calculated from basin means, which is 25% higher than previous results.  相似文献   

20.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号