首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results are presented from three hydrogrpahic surveys in April 1979 of a 40 × 50 km region of the Celtic Sea, centred at 7°W and 51°N, using a towed undulating sensor system. In the 512 days between Surveys 1 and 2, the seasonal thermocline was established, with surface to bottom temperature differences reaching 1.5°C, the average surface chlorophyll a level increased from ~ 1 to ~ 5.5 mg m?3 due mainly to the growth of diatoms, and the surface nitrate concentration decreased from 6 to 1 μM. The third survey was carried out after a further two days and, although surface properties changed little, there was a general deepening of the mixed layer due to stronger winds, and a further increase in the standing stock of phytoplankton.By applying appropriate techniques of horizontal spatial averaging, which took into account possible advective effects, a quantitative comparison was made of the changes at two positions in the survey area which showed significant differences in the rate of development of the phytoplankton population. A simple model of phytoplankton growth was then developed, based on calculations of eddy diffusivity, on measurements of rates of photosynthetic carbon assimilation, and on observations of carbon to chlorophyll ratios, subsurface light attenuation and inorganic nutrient levels. In the absence of any data on zooplankton populations, the loss of phytoplankton by grazing was left as a free parameter.The model was only partly successful in reproducing the observed changes in chlorophyll concentrations during the first 512 days and showed serious limitations for the subsequent 2 days. However, it emphasised several features of the dynamics of spring phytoplankton populations which require further experimental or observational investigation. These include more precise measurements of carbon to chlorophyll ratios and grazing pressure to which the model is sensitive over a rather narrow range (this has important implications in terms both of control by grazing and nutrient limitation), the potential significance of physiological photoadaptation by the plant cells in determining their vertical distribution, and the role of eddy diffusion across the developing thermocline in relation to the sinking of phytoplankton cells and the upward mixing of inorganic nutrients.  相似文献   

2.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

3.
The data accumulated by a measuring complex equipped with a gradient-distributed temperature sensor in the course of towing in the shelf zone near the South Coast of the Crimea and in the region where the flow of the Rim Current crosses the shelf edge are used to analyze the energy and space characteristics of internal waves formed when the flow runs through the shelf edge and to study the process of their propagation both to the coast and to the open part of the sea.  相似文献   

4.
5.
A soil circulation occurs in the south of Cheju Island in the spring. Nutrients and its influence on chlorophyll a(Chl a) around the circulations were studied from April 9 to May 6, 2007. Spring bloom with elevated concentrations of Chl a was observed during the investigation. High concentrations of phosphate, nitrate and silicate at 0.6, 12, and 8 mmol/m3, respectively, were detected. A low water temperature prevented the growth of phytoplankton. Chl a concentrations in the study area might be strongly associated with the high silicate concentration.  相似文献   

6.
The repeated occurrence of a monospecific bloom of the plankton diatom Rhizosolenia delicatula at Roscoff (western English Channel) was made the subject of an interdisciplinary research programme. Samples were taken at daily intervals from April to July and at longer intervals during the remaining part of the year 1985. Routine physical parameters, light transmission, nutrients, dissolved oxygen, particle load, particulate N and P, chlorophyll content, phytoplankton counting, and zooplankton biomass were measured as a basis for more specific studies (to follow as subsequent papers in this series).The area is characterized by: high tidal range, permanent mixing throughout the year, low attenuation coefficients, moderate nutrient supply, and the dominance of benthic algae over phytoplankton. The spring bloom is significantly delayed with respect to the usual model for the temperate seas. Tidal cycles are expected to exert the main influence on bloom dynamics at the time scale of phytoplankton growth.  相似文献   

7.
We investigated the 2005 spring phytoplankton bloom in the Labrador Sea using Seaglider, an autonomous underwater vehicle equipped with hydrographic, bio-optical and oxygen sensors. The Labrador Sea blooms in distinct phases, two of which were observed by Seaglider: the north bloom and the central Labrador Sea bloom. The dominant north bloom and subsequent zooplankton growth are enabled by the advection of low-salinity water from West Greenland in the strong and eddy-rich separation of the boundary current. The glider observed high fluorescence and oxygen supersaturation within haline-stratified eddy-like features; higher fluorescence was observed at the edges than centers of the eddies. In the central Labrador Sea, the bloom occurred in thermally stratified water. Two regions with elevated subsurface chlorophyll were also observed: a 5 m thin-layer in the southwest Labrador Current, and in the Labrador shelf-break front. The thin layer observations were consistent with vertical shearing of an initially thicker chlorophyll patch. Observations at the front showed high fluorescence down to 100 m depth and aligned with the isopycnals defining the front. The high-resolution Seaglider sampling across the entire Labrador Sea provides first estimates of the scale dependence of coincident biological and physical variables.  相似文献   

8.
We investigated the variability of the spring phytoplankton bloom in the Labrador Sea, dividing into distinct biogeographical zones, then analyzing the relationship between the bloom and physical forcings. The spring phytoplankton bloom in the north Labrador Sea varied in intensity by a factor of 4 and in timing of onset by 3 weeks over the 11-year record from SeaWiFS satellite ocean chlorophyll, 1998–2008. This north bloom (north of 60 °N and west of the Labrador shelves) is earliest and most intense, owing in part to the offshore-directed freshwater stratification from the West Greenland Current. On interannual timescales, significant correlations were found between the north bloom intensity and ocean processes, namely offshore advection, eddy activity and runoff from Greenland. In contrast, the central Labrador Sea is later and weaker, and only a correlation between the bloom timing and irradiance was found. As the subpolar gyre shifts in strength and shape, freshwater outflow from the Arctic and Greenland changes, we may expect further changes in the biological response as indicated by these relationships.  相似文献   

9.
10.
The dynamics of ice formation and phytoplankton bloom development in the coastal region of the Okhotsk Sea, Hokkaido, where the Japanese scallop, Mizuhopecten yessoensis, are cultured were investigated using seven years (1998–2004) satellite data from the Special Sensor Microwave/Imager (SSM/I) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The interannual variability of sea ice cover and timing of spring bloom occurrences were analyzed. Longer ice cover in 1999, 2001 and 2003 with the presence of ice until early April and shortened ice cover in 1998, 2000, 2002 and 2004 with the occurrence of ice until early March were recognized at this area. Variability in the timing of sea ice retreat and development of spring blooms at the scallop areas were observed. Progression of a single ice edge bloom showed higher Chl-a concentration compared to development of an initial ice edge bloom followed by a later open water bloom. Higher concentration of phytoplankton biomass was observed in the initial bloom when sea ice melting is delayed compared to when the sea ice leaves earlier. Wind events were also observed to affect the occurrences of spring bloom.  相似文献   

11.
An algal bloom is defined as a relatively rapid increase in the biomass of phytoplankton in an aquatic system. During 30 March to 24 April 2007, a cruise was conducted in the central Southern Huanghai Sea to investigate the spring bloom processes. The spatial and temporal variations of phytoplankton are discussed based on the in-situ observations and simultaneous remote sensing data. The explosive algal blooming varied quickly in temporal and spatial scales, due to the highly patchy distribution. Data obtained at the 2 anchor stations (BM1 and BM2) were analyzed in the present study. Horizontal advection is speculated to be responsible for the abrupt decrease in the concentration of chlorophyll-a at stations BM1 and BM2. At station BM2, the intermediate high chlorophyll-a concentration, coinciding with the low temperature, was found to be advected from the inshore colder water mass located to the east of the site.  相似文献   

12.
The carbon flux through major phytoplankton groups, defined by their pigment markers, was estimated in two contrasting conditions of the Northwestern Mediterranean open ocean ecosystem: the spring bloom and post-bloom situations (hereafter Bloom and Post-bloom, respectively). During Bloom, surface chlorophyll a (Chl a) concentration was higher and dominated by diatoms (53% of Chl a), while during Post-bloom Synechococcus (42%) and Prymnesiophyceae (29%) became dominant. The seawater dilution technique, coupled to high pressure liquid chromatography (HPLC) analysis of pigments and flow cytometry (FCM), was used to estimate growth and grazing rates of major phytoplankton groups in surface waters. Estimated growth rates were corrected for photoacclimation based on FCM-detected changes in red fluorescence per cell. Given the 30% average decrease in the pigment content per cell between the beginning and the end of the incubations, overlooking photoacclimation would have resulted in a 0.40 d?1 underestimation of phytoplankton growth rates. Corrected average growth rates (μo) were 0.90±0.20 (SD) and 0.40±0.14 d?1 for Bloom and Post-bloom phytoplankton, respectively. Diatoms, Cryptophyceae and Synechococcus were identified as fast-growing groups and Prymnesiophyceae and Prasinophyceae as slow-growing groups across Bloom and Post-bloom conditions. The higher growth rate during Bloom was due to dominance of phytoplankton groups with higher growth rates than those dominating in Post-bloom. Average grazing rates (m) were 0.58±0.20 d?1 (SD) and 0.31±0.07 d?1. The proportion of phytoplankton growth consumed by microzooplankton grazing (m/μo) tended to be lower in Bloom (0.69±0.34) than in Post-bloom (0.80±0.08). The intensity of nutrient limitation experienced by phytoplankton indicated by μo/μn (where μn is the nutrient-amended growth rate), was similar during Bloom (0.78) and Post-bloom (0.73). Primary production from surface water (PP) was estimated with 14C incubations. A combination of PP and Chl a synthesis rate yielded C/Chl a ratios of 34±21 and 168±75 (g:g) for Bloom and Post-bloom, respectively. Transformation of group-specific Chl a fluxes into carbon equivalents confirmed the dominant role of diatoms during Bloom and Synechococcus and Prymnesiophyceae during Post-bloom.  相似文献   

13.
Distribution of cyanobacteria cannot be evaluated using chlorophyll a (Chla) in vivo fluorescence, as most of their Chla is located in non-fluorescing photosystem I. Phycobilin fluorescence, in turn, is noted as a useful tool in the detection of cyanobacterial blooms. We applied phycocyanin (PC) fluorometer in the monitoring of the filamentous cyanobacterial bloom in the Baltic Sea. For the bloom forming filamentous cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena, PC fluorescence maximum was identified using the excitation–emission fluorescence matrix. Consequently, the optical setup of our instrument was noted to be appropriate for the detection of PC, and with minor or no interference from Chla and phycoerythrin fluorescence, respectively.During summer 2005, the instrument was installed on a ferryboat commuting between Helsinki (Finland) and Travemünde (Germany), and data were collected during 32 transects providing altogether 200 000 fluorescence records. PC in vivo fluorescence was compared with Chla in vivo fluorescence and turbidity measured simultaneously, and with Chla concentration and biomass of the bloom forming filamentous cyanobacteria determined from discrete water samples.PC fluorescence showed a linear relation to the biomass of the bloom forming filamentous cyanobacteria, and the other sources of PC fluorescence are considered minor in the open Baltic Sea. Estimated by PC fluorescence, cyanobacterial bloom initiated late June at the Northern Baltic Proper, rapidly extended to the central Baltic Proper and the Gulf of Finland, and peaked in the mid-July with values up to 10 mg l−1 (fresh weight). In late July, bloom vanished in most areas.During single transects, or for the whole summer, the variability in Chla concentrations was explained more by PC fluorescence than by Chla fluorescence. Thus, filamentous cyanobacteria dominated the overall variability in phytoplankton biomass. Consequently, we show that during the cyanobacterial blooms, the estimation of Chla concentration using only Chla in vivo fluorescence is not applicable, but PC in vivo fluorescence is required as a predictor as well.  相似文献   

14.
Measurements of suspended particle concentration, size and settling velocity were made at a shallow site in the southern North Sea during a spring phytoplankton bloom. The site was characterised by strong differences in surface and near-bed residual flows; therefore particle processes in each layer are effectively decoupled as long as the water column is stratified. Four distinct energetic events during the observation period caused variation in the characteristics and behaviour of the particle population: (1) moderate spring tides with low wave activity; (2) strong winds, increased wave activity; (3) strong spring tides; (4) weak neap tides. During Event 1 weak tidal resuspension occurred, median particle diameter was relatively large, but median settling velocities of both chlorophyll and total SPM were low. During the higher energy Events 2 and 3 there was resuspension of relatively small, high-density particles producing high median total SPM settling velocities but low median particle diameter. In addition, a phytodetrital fluff layer, characterised by high chlorophyll settling velocity, was resuspended and dispersed during storm conditions (Event 2). During calm, weak neap tides (Event 4) there was negligible resuspension and enhanced particle settling and deposition, particularly in the phytodetritral component of the particle population, allowing rapid replenishment of the benthic fluff layer. This work indicates the relatively rapid rate at which fluff layers can be formed and dispersed, and highlights the need for high frequency measurements. The range of contrasting physical conditions over which the data-set was collected makes it an ideal candidate for parameterising and validating suspended sediment dynamics models.  相似文献   

15.
Fouling was investigated on Marathon Kinsale Field Alpha and Bravo platforms in the Celtic Sea between June 1978 and June 1981. In shallow depths, algae dominated, chiefly Polysiphonia brodiaei and Ulva lactuca. Mussels formed the dominant fouling organism between 6 and 20 m depth, below which were zones of Metridium senile and Alcyonium digitatum, serpulids and the deep water barnacle Balanus hameri. In September 1979 mussels exceeded 2500 m−2 with a modal length of 42 mm. By June 1981, modal length had increased to 67 mm at −4 m and 73 mm at −18 m (maximum size 97 mm). Populations on Bravo were similar. Comparison is made with growth rates on North Sea platforms. On Alpha, percentage cover m−2 in March 1980 was much greater at −4 m than at −18 m, but mean thickness was similar. At −18 m mussels were a heavier fouler on Bravo than Alpha. On Alpha mussel weight did not show a linear relationship with percentage cover.  相似文献   

16.
In July 2004, dominant populations of microbial ultraplankton (<5 μm), in the surface of the Celtic Sea (between UK and Eire), were repeatedly mapped using flow cytometry, at 1.5 km resolution over a region of diameter 100 km. The numerically dominant representatives of all basic functional types were enumerated including one group of phototrophic bacteria (Syn), two groups of phytoplankton (PP, NP), three groups of heterotrophic bacterioplankton (HB) and the regionally dominant group of heterotrophic protists (HP).The distributions of all organisms showed strong spatial variability with little relation to variability in physical fields such as salinity and temperature. Furthermore, there was little agreement between distributions of different organisms. The only linear correlation consistently explaining more than 50% of the variance between any pairing of the organism groups enumerated is between two different groups of HB. Specifically, no linear, or non-linear, relationship is found between any pairings of SYB, PP or HB groups with their protist predators HP. Looking for multiple dependencies, factor analysis reveals three groupings: Syn, PP and low nucleic acid content HB (LNA); high nucleic acid content HB (HNA); HP and NP. Even the manner in which the spatial variability of Syn, PP and HB abundance varies as a function of lengthscale (represented by a semivariogram) differs significantly from that for HP. In summary, although all microbial planktonic groups enumerated are present and numerically dominant throughout the region studied, at face value the relationships between them seem weak.Nevertheless, the behaviour of a simple, illustrative ecological model, with strongly interacting phototrophs and heterotrophs, with stochastic forcing, is shown to be consistent with the observed poor correlations and differences in how spatial variability varies with lengthscale. Thus, our study suggests that a comparison of microbial abundances alone may not discern strong underlying trophic interactions. Specific knowledge of these processes, in particular grazing, will be required to explain the causes of the observed microbial spatial variability and its resulting consequences for the functioning of the ecosystem.  相似文献   

17.
利用氢化物发生-原子荧光光谱法(HG-AFS)对2007年3月30日至4月23日南黄海海域总溶解态无机砷(TDIAs,[TDIAs]=[As5+]+[As3+])的含量进行了测定,其中针对水华中心区域(BM1站)进行了25h的连续观测,以探讨春季水华对有毒类金属元素砷的生物地球化学行为的影响。结果表明,TDIAs的浓度范围为7.9~22.3nmol/L,平均值为(17.8±1.9)nmol/L。TDIAs在南黄海的分布主要表现为由近岸向外海逐渐升高的趋势,最大值出现在南部海域底层海水中。近岸海域表、底层TDIAs的含量相当,而中、南部海域由于存在明显的密度跃层,表、底层TDIAs的浓度具有显著性差异。2007年3月31日至4月1日研究区域西南部受到沙尘天气和降雨的影响,表层海水中TDIAs的含量显著升高。研究区域中、南部海域在观测期间暴发了典型的黄海春季水华,通过大面观测和对重点区域的连续观测可以发现,水华期间TDIAs的分布和磷酸盐类似,与Chl a呈现出较好的负相关关系(r=0.51,P0.05,n=39)。经初步计算,浮游植物水华对10m以上表层水体中TDIAs的清除量约为2.4nmol/L,占表层保有量的15%左右。通过箱式模型计算得出黄海TDIAs的停留时间约为(18.2±8.5)a,远远低于大洋。通过对该海域砷、磷摩尔比值的计算可以发现,南黄海砷、磷摩尔比值约为大洋中的20倍左右,这可能会引起浮游生物对砷酸盐的大量吸收和转化,从而带来潜在的生态危机,需要引起足够的重视。  相似文献   

18.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

19.
The response of nematode communities to the sedimentation of a spring phytoplankton bloom in a sandy, well-oxygenated sediment at a single station (station 330) in the Southern North Sea was investigated monthly from early March to July 1999. Both structural (nematode density, diversity, vertical distribution and community composition) and functional (feeding type distributions, number of species within feeding groups) characteristics showed considerable changes shortly after the arrival of fresh organic material at the sediment surface. The general increase in numerical densities and diversity was related to changes within the groups of selective deposit-feeding and epistrate-feeding nematodes. It is hypothesised that sedimentation and subsequent remineralisation of fresh organic matter during the spring phytoplankton bloom result in an increase of suitable food items (both living and dead). This, combined with the availability of oxygen, creates conditions in which many nematode species can co-exist.  相似文献   

20.
The plankton spring bloom in the northern North Sea was extensively investigated during a period of three months in 1976 at a fixed station occupied by the R.V. “Meteor”. Samples of different depth-profiles, representative of the phytoplankton development, were collected eleven times to analyze the concentration of fatty acids of the particulate matter. The water column was divided into an upper and lower layer according to the thermocline depths, because different processes take place in these layers. During the exponential growth phase the fatty acid concentration rose only slightly due to increases in polyunsaturated fatty acids (18:4, 20:5, 22:6), which are typical for marine plankton. With the exhaustion of nutrients the biochemical composition changed and the fatty acid concentration increased sharply from about 3 to 20 μmol C dm? finally to about 30% of the particulate carbon. The main proportion consisted of oleic acid (28.3%) and palmitic acid (24.2%). The first phytoplankton bloom, dominated by diatoms (Chaetoceros species), was characterized by the increase in fatty acids with 16 carbon atoms, whereas during the second smaller bloom, with dinoflagellates as the main species, more fatty acids with 18 carbon atoms occurred. After the stationary growth phase the phytoplankton biomass strongly decreased, resulting in an increase of particulate matter below the thermocline. The fatty acid pattern there was similar to that during the stationary phase of the phytoplankton bloom in the upper layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号