首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microzooplankton herbivory in the Arabian Sea was measured using dilution experiments towards the end of the SW monsoon in September and during the intermonsoon to NE monsoon period in November–December 1994. Microzooplankton grazing resulted in a turnover of phytoplankton stocks that ranged from 11 to 49% per day. This was equivalent to grazing fluxes of between 1 and 17 mg C m-3 d-1. Depth-integrated microzooplankton herbivory ranged between 161 and 415 mg C m-2 d-1 during the SW monsoon cruise, and between 110 and 407 mg C m-2 d-1 during the intermonsoon period. Microzooplankton grazed between 4 and 60% of daily primary production, with higher percentages found during the intermonsoon season. Phytoplankton growth rates during the SW monsoon ranged from 0.3 to 1.8 d-1, with lower values in upwelling waters and higher values in downwelling and oligotrophic areas. During the intermonsoon period, phytoplankton growth was more uniform across the basin and averaged 0.68±0.15 d-1. Microzooplankton abundance in experimental samples varied between 2800 and 16 162 cells l-1, equivalent to a biomass of between 1.1 and 7.2 mg C m-3. The mean cell carbon content of microzooplankton was similar in both periods and ranged from 0.33 to 0.55 ng C cell-1. Microzooplankton were smallest in downwelling waters and largest in oligotrophic waters. Average clearance rates in those taxa that took up fluorescently-labelled algae ranged from 0.2 to 14 μl ind-1 hr-1. Average mesozooplankton grazing rates, derived from biomass data, varied from 19 to 92 mg C m-2 d-1; these rates accounted for removal of between 4 and 12% of the daily primary production. Mesozooplankton herbivory was most pronounced in upwelling and downwelling waters and reduced in stratified oligotrophic waters during the SW monsoon period. Microzooplankton herbivory was greater than the average mesozooplankton herbivory at all stations, during both the SW monsoon and intermonsoon periods.  相似文献   

2.
Diatoms, dinoflagellates, coccolithophores, nanoflagellates, picophytoplankton and procaryote algae (Synechococcus spp. and prochlorophytes) were quantified by microscopy and flow cytometry, and their biomass determined, at 12 stations along a 1600 km transect across the Arabian Sea at the end of the SW monsoon in September, and during the inter-monsoon period of November/December 1994. The transect spanned contrasting oceanic conditions that varied from seasonally eutrophic, upwelling waters through mesotrophic, downwelling waters to permanently oligotrophic, stratified waters. The overall diversity of diatoms, dinoflagellates and coccolithophores along the transect was not significantly different between the SW monsoon and inter-monsoon. However, diatoms showed greatest diversity during the SW monsoon and coccolithophores were most diverse during the inter-monsoon. Integrated phytoplankton standing stocks during the SW monsoon ranged from 3 to 9 g C m-2 in the upwelling eutrophic waters, from 3 to 5 g C m-2 in downwelling waters, and from 1 to 2 g C m-2 in oligotrophic waters. Similar phytoplankton standing stocks were found in oligotrophic waters during the inter-monsoon, but were ca. 40% lower compared to the SW monsoon in the more physically dynamic waters. Phytoplankton abundance and biomass was dominated by procaryote taxa. Synechococcus spp. were abundant (often >108 cells l-1) during both the SW monsoon and inter-monsoon, where the nitrate concentration was ⩾0.1 μ mol l-1, and often dominated the phytoplankton standing stocks. Prochlorophytes were restricted to oligotrophic stratified waters during the SW monsoon period but were found at all stations along the transect during the inter-monsoon, dominating the phytoplankton standing stocks (>40%) in the oligotrophic region during this period. Of the nano- and micro-phytoplankton, only diatoms contributed significantly to phytoplankton standing stocks, and then only in near-shore upwelling waters during the SW monsoon. There were significant changes in the temporal composition of the phytoplankton community. In nearshore waters a mixed community of diatoms and Synechococcus spp. dominated during the SW monsoon. This gave way to a community dominated by Synechococcus spp. in the intermonsoon. In the downwelling zone, a Synechococcus spp. dominated community was replaced by a mixed procaryote community of Synechococcus spp. and prochlorophytes. In the oligotrophic stratified waters, the mix of procaryote algae was replaced by one dominated by prochlorophytes alone.  相似文献   

3.
Waves at 15 m water depth in the northern Arabian Sea are measured during the summer monsoon for a period of 45 days and the characteristics are described. The significant wave height varied from 1.1 to 4.5 m with an average value of 2.5 m. 75% of the wave height at the measurement location is due to the swells arriving from the south-west and the remaining is due to the seas from south-west to north-west. Wave age of the measured data indicates that the waves in the nearshore waters of northern Arabian Sea during the summer monsoon are swells with young sea.  相似文献   

4.
5.
The Arabian Sea is characterised by strong seasonal oscillations of biological productivity generated by its monsoonal climate. The southwest monsoon causes reversal in the surface circulation of the Arabian Sea, which generates a seasonal upwelling of nutrient-rich waters along the coast of Oman. Concentrations of biogenic sulphur compounds were measured on a transect from the eutrophic waters off the coast of Oman to the oligotrophic waters of the open Arabian Sea, during the UK NERC Arabesque cruise 27 August–4 October 1994. The concentrations of dimethylsulphide (DMS), dimethylsulphoxide (DMSO) and dimethylsulphoniopropionate (DMSP) were found to be elevated in the eutrophic area due to enhanced biological production. However, this increase in DMS, DMSO and DMSP concentration was not observed until after the southwest monsoon had relaxed, and appeared to correspond to increased concentrations of hexanoyloxyfucoxanthin, an indicator of prymnesiophytes. DMSO concentrations were correlated with those of DMS and DMSP in the near surface waters of the Arabian Sea. Additionally, DMSO appeared to be ubiquitous throughout the water column, being easily detectable in deep waters, which suggests that DMSO may act as a sink for DMS in the world’s oceans.  相似文献   

6.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

7.
Experimental data on the vertical structure of theT, S temporal variations in the upper 1000 m layer of the Arabian Sea during the inter-monsoon period from April to June are reported. Variations in the upper mixed layer (UML) thickness and temperature distributed horizontally are considered. The local UML model was used to compute these variations from the atmospheric influence preset from observations.Translated by Mikhail M. Trufanov.  相似文献   

8.
During the late summer monsoon living planktonic foraminifera were collected in the southeastern Arabian Sea between 3°N and 15°N by using six vertical plankton tows. Sixteen species of planktonic foraminifera were identified. Among them, Globigerinoides ruber and Globigerinoides sacculifer are the most abundant species, while the ecologically most important species Globigerina bulloides is very rare. The low abundance of G. bulloides can be explained by the warming of the surface water in combination with deepening of the mixed layer, since this species preferentially dwells in nutrient-rich upwelling waters. The population density of planktonic foraminifera ranges between 31 and 185 specimens per 10−3 m3. The low absolute numbers of planktonic foraminifera are similar to the numbers which were reported before from the non-upwelling areas in the Arabian Sea. The low absolute numbers and the collected foraminiferal assemblages are therefore highly indicative of the Arabian Sea non-upwelling areas. Particularly significant are the low absolute and relative numbers of the non-spinose species Globorotalia menardii and Neogloboquadrina dutertrei. The absence of these species indicate the relatively low nutrient levels in this area at the tail end of the summer monsoon period.  相似文献   

9.
Plankton community net and gross production and dark respiration were determined from in vitro changes in dissolved inorganic carbon and dissolved oxygen during September 1994 along a southeast offshore transect in the Arabian Sea. Surface rates of gross production decreased from 17±0.7 mmol C m-3 d-1 at a coastal upwelling station to 3±0.8 mmol C m-3 d-1 at the most offshore station. The euphotic zone at the time of sampling was predominantly heterotrophic, with integrated net community production values ranging from 15±7 mmol C m-2 d-1 inshore to −253±32 mmol C m-2 d-1 offshore. Calculations of the respiration attributable to the major plankton groups could account for 61–87% of the dark community respiration measured at the inshore stations, but only 15–26% of the community respiration determined offshore. Comparison of the fluxes of dissolved inorganic carbon and oxygen revealed a tendency for higher respiratory quotients than those calculated for organic metabolism prevailing at the offshore stations.  相似文献   

10.
《Marine Chemistry》2001,74(1):1-13
Measurements of methane (CH4) made during two surveys in the eastern and central Arabian Sea in April–May, 1996, and August–September, 1997, corresponding to late Spring Intermonsoon (SI) and Southwest Monsoon (SWM) seasons, respectively, revealed high spatial and temporal variability in surface saturation (110–2521%). The highest values were observed during the SWM in the inner shelf where coastal upwelling combined with freshwater runoff to produce very strong near-surface stratification. These values might result to a large extent from CH4 inputs from coastal wetlands through seasonal runoff as abnormally high saturations (up to ∼13,000%) were recorded in the estuarine surface water. In situ production of CH4, favoured by very high biological production in conjunction with the prevalence of suboxic conditions in the upwelled water, could be the other major CH4 source. In comparison, sedimentary inputs of CH4 seemed to be of lesser importance in spite of previously-reported occurrence of gas-charged sediments in this region.Methane profiles in the open central Arabian Sea showed two maxima. The more pronounced deeper maximum, occurring at 150–200 m depth, was similar to the feature seen elsewhere in the oceans, but was probably intensified here due to an acute oxygen deficiency. It showed some correlation with the subsurface particle maximum characteristic of the denitrifying layer. The dominant mechanism of its formation might be in situ production within particles rather than advection from the continental shelf as concluded by previous workers. The less pronounced and previously unreported shallower maximum, occurring in the well-oxygenated upper 50 m of the water column, was more dynamic probably as a result of variability of the balance between CH4 production due to biological activity and its losses through microbial oxidation and air–sea exchange.  相似文献   

11.
Concentrations of dissolved Al and Fe in the surface mixed layer were measured during five cruises of the 1995 US JGOFS Arabian Sea Process Study, Concentrations of both Al and Fe were relatively uniform between January and April, the NE Monsoon and the Spring Intermonsoon period, ranging from 2 to 11 nM Al (mean 5.3 nM) and 0.5 to 2.4 nM Fe (mean 1.0 nM). In July/August, after the onset of the SW Monsoon, surface water Al and Fe concentrations increased significantly (Al range 4.5–20.1 nM; mean=10 nM, Fe range 0.57–2.4 nM; mean=1.3 nM), particularly in the NE part of the Arabian Sea, as the result of the input and partial dissolution of eolian dust. Using the enrichment of Al in the surface waters, we estimate this is the equivalent to the deposition of 2.2–7.4 g m−2 dust, which is comparable to values previously estimated for this region. Approximately one month later (August/September), surface water concentrations of both Al and Fe were found to have decreased significantly (mean Al 7.4 nM, mean Fe 0.90 nM) particularly in the same NE region, as the result of export of particulate material from the euphotic zone. Fe supply to the surface waters is also affected by upwelling of sub-surface waters in the coastal region of the Arabian Sea during the SW Monsoon. Despite the proximity of high concentrations of Fe in the shallow sub-oxic layer, freshly upwelled water is not drawn from this layer and the NO3/Fe ratio in the initially upwelled water is below the value at which Fe limitation is through to occur. Continued deposition of eolian Fe into the upwelled water as it advects offshore provides the Fe required to raise this ratio above the Fe limitation value.  相似文献   

12.
Remote sensing applications are important in the fisheries sector and efforts were on to improve the predic-tions of potential fishing zones using ocean color. The present study was aimed to investigat...  相似文献   

13.
Indian monsoon precipitation fluctuated significantly during the Holocene and a reliable reconstruction of the timing of the events and their implications is of great benefit to our understanding of the effect and response of low latitude climate systems to the forcing factors. We have carried out high-resolution terrigenous proxy studies on a laminated sediment core from the Oxygen Minimum Zone of the eastern Arabian Sea margin to reconstruct the summer monsoon-controlled precipitation changes during the Holocene. The temporal variation in the terrigenous proxy indicators of this core, in combination with other high-quality cores from the Arabian Sea, suggests several abrupt events in monsoon precipitation throughout the Holocene. The early Holocene monsoon intensification occurred in two abrupt steps at 9500 and 9100 years BP and weakened gradually thereafter, starting at 8500 years BP. A weakening in precipitation recorded at ∼7000 years BP, synchronous with similar conditions in India. One of the most significant weak monsoon periods recorded in our studies lies between 6000 and 5500 years BP. Spectral analysis of the precipitation records reveals statistically significant periodicities at 2200, 1350, 950, 750, 470, 320, 220, 156, 126, 113, 104 and 92 years. Most of these millennial-to-centennial cycles exist in various monsoon records as well as the tree ring Δ14C data and/or other solar proxy records. We suggest that throughout the Holocene, externally, small changes in solar activity controlled the Indian monsoon to a large extent, whereas internally, non-solar causes could have influenced the amplitude of decadal-to-centennial oscillations.  相似文献   

14.
Remote sensing applications are important in the fisheries sector and efforts were on to improve the predictions of potential fishing zones using ocean color. The present study was aimed to investigate the phytoplankton dynamics and their absorption properties in the coastal waters of the southeastern Arabian Sea in different seasons during the year 2010 to 2011. The region exhibited 73 genera of phytoplankton from 19 orders and 41 families. The numerical abundance of phytoplankton varied from 14.235×103 to 55.075×106 cells/L. Centric diatoms dominated in the region and the largest family identified was Thalassiosiraceae with main genera as Skeletonema spp., Planktionella spp. and Thalassiosira spp. Annual variations in abundance of phytoplankton showed a typical one-peak cycle, with the highest recorded during premonsoon season and the lowest during monsoon season. The species diversity index of phytoplankton exhibited low diversity during monsoon season. Phytoplankton with pigments Chlorophyll a, Chlorophyll b, Chlorophyll c, peridinin, diadinoxanthin, fucoxanthin, β-carotene and phycoerythrobilin dominated in these waters. The knowledge on phytoplankton dynamics in coastal waters of the southeastern Arabian Sea forms a key parameter in bio-optical models of pigments and productivity and for the interpretation of remotely sensed ocean color data.  相似文献   

15.
Thermister chain data at different depths for June 1998 cyclone in the Arabian Sea at a location (69.2 E,15.5 N) which is about 60 km to the left of the cyclone track indicates subsurface warming below 60 m and inertial oscillations of temperature with a periodicity of about 2 days. The oscillations continued for ∼15 days even after the cyclone crossed the coast. The analysis of the buoy, DS1 located at the same position also suggests a stabilized southward flow after about two weeks of the cyclone crossed the coast. Analysis of the buoy data for May 1999 cyclone in the same region also indicates similar pattern. In order to investigate the effect of cyclone–ocean interaction and primarily to understand the process for the subsurface warming, 3-dimensional Princeton Ocean Model is configured for the eastern part of the Arabian Sea. The model uses high horizontal resolution of about 6 km near the coast and a terrain following sigma coordinate in the vertical with 26 levels. The study focuses on surface cooling and temperature rise in the underlying waters and explains its mechanism through upwelling and downwelling respectively. The simulations in concurrence with the observations suggest that the occurrence of subsurface warming precedes the surface cooling with a lag of ˜a day as the cyclone advances DS1. The simulations also demonstrate local temperature stratification plays an important role for cooling of the upper ocean and warming of the subsurface waters and extent of warming is directly related to the depth of the thermocline.  相似文献   

16.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

17.
18.
Sea surface temperatures (SST) and primary productivities have been reconstructed for the northeastern Arabian Sea during the past 65,000 years, using C37-alkenones. Comparison of this SST record with '18O from Greenland ice core GISP2 shows striking similarities, indicating an apparent linkage between the climate of the Arabian Sea with that of the northern North Atlantic, most probably via atmospheric and/or oceanic circulation. These rapid SST changes are in the long term overlain by insolation changes at 30°N.  相似文献   

19.
This investigation focused on the weaker and less well understood of the two Arabian Sea monsoonal wind phases, the NE Monsoon, which persists for 3–4 months in the October to February period. Historically, this period has been characterized as a time of very low nutrient availability and low biological production. As part of the US JGOFS Arabian Sea Process Study, 17 stations were sampled on a cruise in January 1995 (late NE Monsoon) and, 15 stations were sampled on a cruise in November 1995 (early NE Monsoon). Only the southern most stations (10° and 12°N) and one shallow coastal station were as nutrient-depleted as had been expected from the few relevant prior studies in this region. Experiments were conducted to ascertain the relative importance of different nitrogenous nutrients and the sufficiency of local regeneration processes in supplying nitrogenous nutrients utilized in primary production. Except for the southern oligotrophic stations, the euphotic zone concentrations of NO3 were typically 5–10-fold greater than those of NO2 and NH4+. There was considerable variation (20–40-fold) in nutrient concentration both within and between the two sections on each cruise. All nitrogenous nutrients were more abundant (2–4-fold) later in the NE Monsoon. Strong vertical gradients in euphotic zone NH4+ concentration, with higher concentrations at depth, were common. This was in contrast to the nearly uniform euphotic zone concentrations for both NO3 and NO2. Half-saturation constants for uptake were higher for NO3 (1.7 μmol kg−1 (s.d.=0.88, n=8)) than for NH4+ (0.47 μmol kg−1 (s.d.=0.33, n=5)). Evidence for the suppressing effect of NH4+ on NO3 uptake was widespread, although not as severe as has been noted for some other regions. Both the degree of sensitivity of NO3 uptake to NH4+ concentration and the half-saturation constant for NO3 uptake were correlated with ambient NO3 concentration. The combined effect of high affinity for low concentrations of NH4+ and the effect of NH4+ concentration on NO3 uptake resulted in similarly low f-ratios, 0.15 (s.d.=0.07, n=15) and 0.13 (s.d.=0.08, n=17), for early and late observations in the NE Monsoon, respectively. Stations with high f-ratios had the lowest euphotic zone NH4+ concentrations, and these stations were either very near shore or far from shore in the most oligotrophic waters. At several stations, particularly early in the NE Monsoon, the utilization rates for NO2 were equal to or greater than 50% the utilization rates for NO3. When converted with a Redfield C : N value of 6.7, the total N uptake rates measured in this study were commensurate with measurements of C productivity. While nutrient concentrations at some stations approached levels low enough to limit phytoplankton growth, light was shown to be very important in regulating N uptake at all stations in this study. Diel periodicity was observed for uptake of all nitrogenous nutrients at all stations. The amplitude of this periodicity was positively correlated with nutrient concentration. The strongest of these relationships occurred with NO3. Ammonium concentration strongly influenced the vertical profiles for NO3 uptake as well as for NH4+ uptake. Both NO2 and NH4+ were regenerated within the euphotic zone at rates comparable to rates of uptake of these nutrients, and thus maintenance of mixed layer concentrations did not require diffusive or advective fluxes from other sources. Observed turnover times for NH4+ were typically less than one day. Rapid turnover and the strong light regulation of NH4+ uptake allowed the development and maintenance of vertical structure in NH4+ concentration within the euphotic zone. In spite of the strong positive effect of light on NO2 uptake and its strong negative effect on NO2 production, the combined effects of much longer turnover times for this nutrient and mixed layer dynamics resulted in nearly uniform NO2 concentrations within the euphotic zone. Responses of the NE Monsoon planktonic community to light and nutrients, in conjunction with mixed layer dynamics, allowed for efficient recycling of N within the mixed layer. As the NE Monsoon evolved and the mixed layer deepened convectively, NO2 and NO3 concentrations increased correspondingly with the entrainment of deeper water. Planktonic N productivity increased 2-fold, but without a significant change the new vs. recycled N proportionality. Consequently, NO3 turnover time increased from about 1 month to greater than 3 months. This reflected the overriding importance of recycling processes in supplying nitrogenous nutrients for primary production throughout the duration of the NE Monsoon. As a result, NO3 supplied to the euphotic zone during the NE Monsoon is, for the most part, conserved for utilization during the subsequent intermonsoon period.  相似文献   

20.
The concentration of calcium was determined in the samples collected from four stations in the Laccadive Sea and from two lagoons of Kavaratti and Minicoy atolls. The calcium/chlorinity ratio for the open ocean samples was found to be 0.02168 ± 0.000015 with an average calcium concentration of 424.9 mg kg?1. A maximum in this ratio was observed at about 200 m depth, below the salinity maximum corresponding to Arabian Sea Surface Water mass. No increase in calcium concentration or in calcium/chlorinity ratio was observed down to 1500 m depth, thereby ruling out the possibility of any calcium carbonate dissolution at these depths. Samples from Kavaratti and Minicoy lagoons gave much lower values of the Ca/Cl ratio (0.02145 ± 0.000036 and 0.02142 ± 0.000046, respectively). These low values are apparently the result of calcium utilization by the coral reefs. Using the reduction in the calcium concentration inside the lagoon, in the absence of any chemical precipitation, the annual CaCO3 production by reef flat and lagoon on Kavaratti Atoll has been estimated as 1 · 107 kg. This gives an average gross production of 1.4 kg CaCO3 per m2 per yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号