首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Phytoplankton NH4+ and NO3 uptake was examined along the longitudinal salinity gradient of the Delaware Estuary over several seasonal cycles using 15N-tracer techniques. Saturated nitrogen uptake rates increased directly with water temperature and reached a maximum of 380 nmol Nl−1h−1 during summer. This temperature dependence was related primarily to changes in the rate of maximum chlorophyll specific uptake, which varied exponentially between 2 and 70 nmol N [μg Chl h]−1 over a temperature range of 2–28°C. Despite these high uptake rates, balanced growth (C:N7:1) could be maintained over the diel light cycle only by highly efficient nitrogen uptake at low light intensities and dark uptake below the photic zone and at night (dark UPTAKE=25% maximum uptake).Ammonium fulfilled 82% of the annual phytoplankton nitrogen demand in the estuary despite dominance of NO3 in the ambient dissolved inorganic nitrogen pool. The predominance of NH4+ uptake occurred because of the general suppression of NO3 assimilation at NH4+ concentrations in excess of 2 μ . This suppression, however, was not as universal as has been reported for other systems, and it is suggested that the extremely high NO3 concentrations found in the estuary contribute to this pattern. Nitrate was a significant source of nitrogen only during periods of high phytoplankton production in summer, and when NH4+ concentrations were low towards the end of the spring bloom.  相似文献   

2.
The first estimates of uptake kinetic parameters for NH4+, NO3, and urea in the Ross Sea, Antarctica were measured on three cruises during austral late winter–early spring 1996 (pre-bloom), late spring 1997 (bloom development), and summer 1997 (bloom decline). Nitrogen (N) uptake experiments were conducted with water collected at the 50% light penetration depth using trace-metal clean protocols and 15N tracer techniques. At all sites, ambient NO3 concentrations ranged from 5.8 to 30.5 μg-at N l−1 and silicic acid concentrations were greater than 62.0 μg-at Si l−1. The following trends were observed. First, based on maximum uptake rates (Vmax), apparent N utilization followed the order NO3>NH4+>urea during the pre-bloom and bloom development cruises. During the summer cruise, as the bloom was declining, the apparent order of utilization was NH4+>NO3>urea. Second, evidence for possible repression of NO3 uptake by elevated NH4+ concentrations was only observed at one site. Third, the kinetic parameters of NH4+ uptake rates corrected for isotope dilution were compared with the kinetic parameters determined from uncorrected rates. In this comparison, the measure of substrate affinity, α (α=Vmax/Ks) increased by an average of 4.6-fold when rates were corrected for isotope dilution, but values of Vmax remained unchanged. Fourth, using bacterial production data, the magnitude of bacterial N uptake was estimated. Assuming that all bacterial N demands were met with NH4+, the estimated bacterial portion of NH4+ uptake ranged from <1%, when the ratio of bacteria to autotrophic biomass was low, to 35%, when bacterial abundance and biomass were highest. Finally, dramatic changes in NH4+ uptake capacity were observed at one station (Stn. O), where kinetic parameters were measured during all three cruises. We hypothesize that a mutualistic relationship exists between phytoplankton and heterotrophic bacteria, and that the creation of microzones of high NH4+ concentrations contributed to the changes seen at this station.  相似文献   

3.
This investigation focused on the weaker and less well understood of the two Arabian Sea monsoonal wind phases, the NE Monsoon, which persists for 3–4 months in the October to February period. Historically, this period has been characterized as a time of very low nutrient availability and low biological production. As part of the US JGOFS Arabian Sea Process Study, 17 stations were sampled on a cruise in January 1995 (late NE Monsoon) and, 15 stations were sampled on a cruise in November 1995 (early NE Monsoon). Only the southern most stations (10° and 12°N) and one shallow coastal station were as nutrient-depleted as had been expected from the few relevant prior studies in this region. Experiments were conducted to ascertain the relative importance of different nitrogenous nutrients and the sufficiency of local regeneration processes in supplying nitrogenous nutrients utilized in primary production. Except for the southern oligotrophic stations, the euphotic zone concentrations of NO3 were typically 5–10-fold greater than those of NO2 and NH4+. There was considerable variation (20–40-fold) in nutrient concentration both within and between the two sections on each cruise. All nitrogenous nutrients were more abundant (2–4-fold) later in the NE Monsoon. Strong vertical gradients in euphotic zone NH4+ concentration, with higher concentrations at depth, were common. This was in contrast to the nearly uniform euphotic zone concentrations for both NO3 and NO2. Half-saturation constants for uptake were higher for NO3 (1.7 μmol kg−1 (s.d.=0.88, n=8)) than for NH4+ (0.47 μmol kg−1 (s.d.=0.33, n=5)). Evidence for the suppressing effect of NH4+ on NO3 uptake was widespread, although not as severe as has been noted for some other regions. Both the degree of sensitivity of NO3 uptake to NH4+ concentration and the half-saturation constant for NO3 uptake were correlated with ambient NO3 concentration. The combined effect of high affinity for low concentrations of NH4+ and the effect of NH4+ concentration on NO3 uptake resulted in similarly low f-ratios, 0.15 (s.d.=0.07, n=15) and 0.13 (s.d.=0.08, n=17), for early and late observations in the NE Monsoon, respectively. Stations with high f-ratios had the lowest euphotic zone NH4+ concentrations, and these stations were either very near shore or far from shore in the most oligotrophic waters. At several stations, particularly early in the NE Monsoon, the utilization rates for NO2 were equal to or greater than 50% the utilization rates for NO3. When converted with a Redfield C : N value of 6.7, the total N uptake rates measured in this study were commensurate with measurements of C productivity. While nutrient concentrations at some stations approached levels low enough to limit phytoplankton growth, light was shown to be very important in regulating N uptake at all stations in this study. Diel periodicity was observed for uptake of all nitrogenous nutrients at all stations. The amplitude of this periodicity was positively correlated with nutrient concentration. The strongest of these relationships occurred with NO3. Ammonium concentration strongly influenced the vertical profiles for NO3 uptake as well as for NH4+ uptake. Both NO2 and NH4+ were regenerated within the euphotic zone at rates comparable to rates of uptake of these nutrients, and thus maintenance of mixed layer concentrations did not require diffusive or advective fluxes from other sources. Observed turnover times for NH4+ were typically less than one day. Rapid turnover and the strong light regulation of NH4+ uptake allowed the development and maintenance of vertical structure in NH4+ concentration within the euphotic zone. In spite of the strong positive effect of light on NO2 uptake and its strong negative effect on NO2 production, the combined effects of much longer turnover times for this nutrient and mixed layer dynamics resulted in nearly uniform NO2 concentrations within the euphotic zone. Responses of the NE Monsoon planktonic community to light and nutrients, in conjunction with mixed layer dynamics, allowed for efficient recycling of N within the mixed layer. As the NE Monsoon evolved and the mixed layer deepened convectively, NO2 and NO3 concentrations increased correspondingly with the entrainment of deeper water. Planktonic N productivity increased 2-fold, but without a significant change the new vs. recycled N proportionality. Consequently, NO3 turnover time increased from about 1 month to greater than 3 months. This reflected the overriding importance of recycling processes in supplying nitrogenous nutrients for primary production throughout the duration of the NE Monsoon. As a result, NO3 supplied to the euphotic zone during the NE Monsoon is, for the most part, conserved for utilization during the subsequent intermonsoon period.  相似文献   

4.
Abstract

Uptake rates of ammonium (NH4 + ), nitrate (NO3 ? ), and urea by three subgroups of phytoplankton (< 200, < 20, < 2 μm) off Westland, were measured using 15 N tracer techniques in midwinter 1988, after a recent upwelling. For all size fractions at surface irradiance (I100), nitrogen (N) was taken up primarily as NO3 ?. This accounted for 67–85% of total N uptake (SρN), whereas at 40 and 7% of surface irradiance, the regenerated N (NH4 + ) and urea) made up 31–72% of SρN. Depth profile experiments for all three size components showed that uptake of NO3 ? was most light‐sensitive, followed by that of NH4 + and urea. The irradiance and nutrient availability plot indicated that light was substantially more important than the nutrient concentrations in controlling the assimilation of N by microplankton (20–200 μm). Nano‐ (2–20 μm) and picoplankton (< 2 μm) however, were not as sensitive to either light or nutrient concentrations. High winds and the resulting deep mixing, combined with offshore and alongshore advection in the midwinter, were suggested to be the major cause of the low biomass and N productivity.  相似文献   

5.
We analysed mixed-layer seasonal and interannual variability in phytoplankton biomass and macronutrient (NO3 and Si(OH)4) concentrations from three decades of observations, and nitrogen uptake rates from the 1990s along Line P in the NE subarctic Pacific. Chlorophyll a concentrations near 0.35 mg m−3 were observed year-round along Line P except at the nearshore station (P4) where chlorophyll a concentrations in spring were on average 2.4 times the winter values. In contrast, the temporal variability in carbon-to-chlorophyll ratios at the two main end members of Line P (P4 and OSP) was high. Large seasonal and interannual variability in NO3 and Si(OH)4 concentration were observed along Line P. Highest upper mixed-layer (top 15 m) nutrient concentrations occurred on the continental shelf in late summer and early fall due to seasonal coastal upwelling. Beyond the shelf, maximum nutrient concentrations increased gradually offshore, and were highest in late winter and early spring due to mixing by winter storms. Interannual variations in upper mixed-layer nutrient concentrations beyond the shelf (>128°W) were correlated with E-W winds and the PDO since 1988 but were not correlated with either climate index between 1973 and 1981. Despite differences in nutrient concentration, nutrient utilization (ΔNO3 and ΔSi(OH)4) during the growing season were about 7.5 μM at all offshore stations. Variations in ΔNO3 were correlated with those of ΔSi(OH)4. The annual cycle of absolute NO3 uptake (ρNO3) and NH4 uptake (ρNH4) rates by phytoplankton in the upper mixed-layer showed a weak increasing trend from winter to spring/summer for the period 1992-1997. Rates were more variable at the nearshore station (P4). Rates of ρNO3 were low along the entire line despite abundant NO3 and low iron (Fe), at the offshore portion of Line P and sufficient Fe at the nearshore station (P4). As a result, new production contributed on average to only 32 ± 15% of the total nitrogen (N) uptake along Line P. NO3 utilization in the NE subarctic Pacific is probably controlled by a combination of environmental variables, including Fe, light and ambient NH4 levels. Elevated ambient NH4 concentrations seem to decrease the rates of new production (and f-ratios) in surface waters of the oceanic subarctic NE Pacific. Contrary to expectation, phytoplankton biomass, nutrient utilization (ΔNO3 and ΔSi(OH)4), and nitrogen uptake (ρNO3 + ρNH4) varied relatively little along Line P, despite significant differences in the factors controlling phytoplankton composition assemblages and production. Future studies would benefit from including other variables, especially light limitation, to improve our understanding of the seasonal and interannual variability in phytoplankton biomass and nutrients in this region.  相似文献   

6.
长江口及邻近海区营养盐结构与限制   总被引:5,自引:0,他引:5  
通过研究长江口及邻近海域溶解无机氮(DIN=NO3-+NO2-+NH4+)、磷酸盐(PO43-)、硅酸盐(SiO32-)所表征的营养盐区域结构特征及影响因素,在分析营养盐绝对限制情况的基础上,划分了潜在相对营养限制区域。结果表明,123°E以西近岸表层区域DIN/P比值全年均高于16,而Si/DIN除秋季外基本小于1,显示出长江冲淡水影响下"过量氮"的特征。春夏季河口锋面区(31°~32.5°N,122.5°~124°E)硅藻的大量生长可使DIN/P异常升高和Si/DIN异常降低。秋季研究区域北部DIN/P西低东高且Si/DIN西高东低是由于在高DIN、低PO43-的长江冲淡水影响下,近岸受相对低DIN、高SiO32-的苏北沿岸流南下入侵影响而被分割而成。冬季长江口门东北部存在的高DIN/P和低Si/DIN区则主要由于寡营养盐的黑潮水深入陆架,向东北输送的部分长江冲淡水和增强的苏北沿岸流共同作用造成DIN升高所致。利用Redfield比值进行了不同站位表层潜在相对营养限制情况的区分。近岸123°E以西受高DIN、SiO32-长江冲淡水影响,四季多呈现PO43-潜在相对限制,而在春夏季由于浮游植物的大量吸收PO43-,造成局部PO43-绝对限制及潜在相对限制。春夏季氮限(DIN潜在相对限制)一般发生在外海部分站位,但较为零散。秋季除了东南外海大部分站位外,受苏北沿岸流影响在长江口北部近岸也存在氮限。随着低DIN/P的黑潮表层水(KSW)的入侵加强,冬季外海氮限站位增多。硅限(SiO32-潜在相对限制)在夏季发生在赤潮高发区,而冬季南部存在较多硅限站位表明KSW中SiO32-相对较为缺乏。  相似文献   

7.
浒苔对NH+4-N与NO-3-N吸收的相互作用   总被引:1,自引:0,他引:1  
在国内首次研究了大型海洋绿潮藻浒苔(Ulva prolifera)对NH4+-N与NO 3--N两种氮源的选择吸收作用。结果表明:当两种氮源等浓度比例存在时,随着NH4+-N与NO3--N浓度升高,藻体对NH4+-N的吸收速率逐渐升高,而对NO3--N吸收受到抑制;当NO3--N和NH 4+-N高浓度比存在时,藻体对NH4-N的吸收速率随着NO3--N/NH4+-N比例的升高和NH4-N浓度的下降而降低;当NO3--N和NH4+-N低浓度比存在时,藻体对NH+4-N保持较高的吸收速率,而对NO3--N的吸收效率随着NO3--N浓度的降低而降低;浒苔具有同时利用水体中较高浓度的NH+4-N和NO3--N的能力,只有当NH4+-N或NO3--N浓度较低时,才以吸收相对应的氮源为主。这说明浒苔能够快速、大量地吸收水体中氮源,为爆发性增殖贮备物质条件。同时,即便两种氮源同时存在,浒苔对NH+4-N的吸收速率也远高于对NO3--N的吸收速率,因此,控制NH4+-N的大量输入仍是预防浒苔绿潮爆发的关键。  相似文献   

8.
On the basis of mass balance calculations performed for nitrogen (N) uptake experiments in the Southern California Bight (SCB), it has been suggested that a significant portion of dissolved inorganic N (DIN) uptake results in the production of dissolved organic N (DON). To investigate this process, the fate of ammonium (NH4+) and nitrate (NO3) uptake was quantified within the euphotic zone at three coastal stations in the SCB using 15N tracer techniques. Several trends in the fate of DIN and the production of DON were observed. First, production of particulate N (PN), from both NH4+ and NO3, was quantitatively more important in near surface waters, while DON release dominated within the nitracline. Second, the percentage of gross N uptake released as DON was generally higher when NO3, rather than NH4+, was the substrate. Third, the percentage of N released as DON was higher at night, relative to the day. Fourth, rates of DON release were significantly correlated to NH4+ regeneration, suggesting that similar mechanisms are responsible for both processes—presumably grazing. The results of this study indicate that the DON pool is a sink for DIN uptake on the time scale of hours. One implication of this finding is that new production estimates based on 15NO3 uptake rates will likely underestimate particle flux out of the surface layer because the rate of NO3 uptake is underestimated due to loss of DO15N during the incubation. On time scales of months to years, however, the N that is taken up as NO3 and released as DON will likely contribute to export flux via incorporation of the dissolved phase during seasonal mixing into sinking particles or transport. The export of DON on these time scales argues for the use of gross uptake rates to calculate f-ratios.  相似文献   

9.
In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH4 regeneration. NH4 and NO3 uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO3 (vNO3) was 0.0026 h−1 (range 0.0013-0.0065 h−1) and for NH4 (vNH4) was 0.0097 h−1 (0.0014-0.0376 h−1). vNH4 was related positively with NH4 availability, which ranged from 0.1 to 1.5 mmol m−3 within the upper mixed layer. Ambient NH4 concentrations and vNH4 were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from ∼1 g krill fresh mass m−2 in the northwest to >4 kg krill wet mass m−2 in the northeast. In contrast to the variability found with NH4 concentrations and uptake rates, vNO3 was more uniform across the sampling sites. Under these conditions, increasing NH4 concentration appeared to represent an additional N resource. However, high vNH4 tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m−3. These patterns suggest a coupling between phytoplankton biomass, vNH4 and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH4 excretion supported enhanced uptake rates by the remaining, ungrazed cells.  相似文献   

10.
Aerobic NH4+ oxidation rates were measured along the strong oxygen gradient associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific off northern Chile (∼20°S) during 2000, 2003, and 2004. This process was examined by comparing NH4+ rates of change during dark incubations, with and without the addition of allylthiourea, a classical inhibitor of the ammonia monooxygenase enzyme of ammonium-oxidizing bacteria. The contribution of aerobic NH4+ oxidation in dark carbon fixation and NO2 rates of change were also explored. Thirteen samples were retrieved from the oxycline (252 to ⩽5 μM O2; 15 to ∼65 m depth) and three from the oxygen minimum core (⩽5 μM O2; 100–200 m depth). Aerobic NH4+ oxidation rates were mainly detected in the upper part (15–30 m depth) of the oxycline, with rates ranging from 0.16 to 0.79 μM d−1, but not towards the oxycline base (40–65 m depth). In the oxygen minimum core, aerobic NH4+ oxidation was in the upper range and higher than in the upper part of the oxycline (0.70 and 1.0 μM d−1). Carbon fixation rates through aerobic NH4+ oxidation ranged from 0.18 to 0.43 μg C L−1 d−1 and contributed between 33% and 57% of the total dark carbon fixation, mainly towards the oxycline base and, in a single experiment, in the upper part of the oxycline. NO2 consumption was high (up to 10 μM d−1) towards the oxycline base and OMZ core, but was significantly reduced in experiments amended with allylthiourea, indicating that aerobic NH4+ oxidation could contribute between 8% and 76% of NO2 production, which in turn could be available for denitrifiers. Overall, these results support the important role of aerobic NH4+ oxidizers in the nitrogen and carbon cycling in the OMZ and at its upper boundary.  相似文献   

11.
We examined the impact of a 1:3 year return period flood on benthic and pelagic coupling in the river-dominated sub-tropical Brunswick Estuary. The flood had a significant impact on the study site flushing it with freshwater, reducing the flushing time 0.6 days, increasing nutrient concentrations in the water column and scouring the sediment surface. In the three weeks post-flood the benthic and pelagic systems alternated between being coupled and un-coupled via dissolved, particulate and living material pathways. Immediately post-flood benthic and pelagic coupling via the deposition of phyto-detritus and viable algal cells was reduced due to the scouring of the top sediment layers, and benthic respiration and productivity and NH4+ effluxes all decreased correspondingly. In contrast, benthic and pelagic coupling was enhanced via the uptake and denitrification of NO3 due to elevated NO3 concentrations in the water column. Some of the NO3 consumed by the sediments may have also been converted to DON. Two weeks post-flood benthic and pelagic coupling was significantly enhanced via the deposition of phyto-detritus and viable algal cells associated with a phytoplankton bloom in the water column. This increased supply of phyto-detritus and viable algal cells rapidly increased benthic respiration and productivity and NH4+ efflux. The depletion of water column DIN by the phytoplankton bloom resulted in a de-coupling of the benthic and pelagic systems via the uptake and denitrification of NO3. However, benthic and pelagic coupling was enhanced via the uptake of NH4+ by benthic microalgae. Three weeks post-flood the phytoplankton bloom had collapsed and the coupling between the benthic and pelagic systems via the deposition of phyto-detritus and living algal cells had diminished. Again benthic and pelagic coupling was enhanced via the uptake and denitrification of NO3 due to elevated NO3 concentrations in the water column associated with the recycling of bloom material. Overall the sediments became less heterotrophic (increasing benthic productivity/respiration ratio) following the flood. Floods can cause rapid and complex changes in the coupling between benthic and pelagic systems in sub-tropical estuaries.  相似文献   

12.
桑沟湾养殖海域营养盐和沉积物-水界面扩散通量研究   总被引:7,自引:0,他引:7  
利用2006年4,7,11月和2007年1月4个航次对桑沟湾养殖海域的观测资料,分析了该海域营养盐分布、结构特征、主要控制过程以及沉积物-水界面扩散通量,结果表明,该海域的营养盐分布具有明显的季节变化,海水中NO3-,NO2-,PO43-,DOP,TDP和SiO32-浓度皆是秋季最高,而NH4+,DON,TDN浓度则为夏季最高;各种营养盐的最低值除DON外都出现在春季。春季湾内外海水交换不畅,再加上大型藻类海带等生长旺盛期的消耗,使营养盐浓度处于较低水平,在夏秋两季丰水期沿岸河流注入对该海域营养盐的影响较大,冬季无机营养盐浓度分布主要受沿岸流的影响。磷的结构变化较大,其中DOP百分含量在夏季最高,达到81%。从春季到秋季海水中TDN的结构变化从以DON为主转变成以DIN为主。硅和氮的原子比值全年变化不大,硅和氮和氮和磷原子比值春夏两季的高于秋冬季的。分析营养盐化学计量限制标准和浮游植物生长的最低阈值结果表明,磷是春夏两季桑沟湾浮游植物生长的限制性因素;春季硅浓度低于浮游植物生长的最低阀值,也是一个潜在的限制因素。计算结果显示桑沟湾沉积物释放的NH4+,SiO32-和PO43-对初级生产力的贡献较小,与其他浅海环境相比,桑沟湾沉积物-水界面的营养盐通量处于较低或中等水平。  相似文献   

13.
The uptake of urea, nitrate and ammonium by phytoplankton was measured using 15N isotopes over a one-year period in Great South Bay, a shallow coastal lagoon. The bay is a unique environment for the study of nutrient uptake since ambient concentrations of NO3?NH4+ and urea remain relatively high through the year, and phytoplankton are probably never nutrient limited. Urea nitrogen averaged 52% of the total assimilated, while ammonium represented 33% and nitrate 13%. High rates of ammonium uptake occurred only at low urea concentrations (ca< 1-μg-atom urea l?1). Over the sampling period urea was present in relatively high concentrations, averaging 5·35 μg-atom N l?1, while means for ammonium and nitrate averaged 1·94 and 0·65 μg-atom N l?1, respectively. Total N uptake measured with 15N averaged about 3·3 times the calculated (from elemental ratios and 14C productivity measurements) N needs of the phytoplankton population. Highest nitrogen uptake occurred in the summer and coincided with the primary production maximum.  相似文献   

14.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

15.
A Geographic Information System (GIS)-aided flow-tracking technique was adopted to investigate nutrient exchange rates between specific benthic communities and overlying seawater in a fringing reef of Ishigaki Island, subtropical Northwestern Pacific. Net exchange rates of NO3 , NO2 , NH4 +, PO4 3−, Total-N and Total-P were estimated from concentration changes along the drogue trajectories, each of which was tracked by the Global Positioning System and plotted on a benthic map to determine the types of benthic habitat over which the drogue had passed. The observed nutrient exchange rates were compared between 5 typical benthic zones (branched-coral (B) and Heliopora communities (H), seaweed-reefrock zone (W), bare sand area (S), and seagrass meadow (G)). The dependence of nutrient exchange rates on nutrient concentrations, physical conditions and benthic characteristics was analyzed by multiple regression analysis with the aid of GIS. The spatial correlation between nutrient exchange rates and benthic characteristics was confirmed, especially for NO3 and PO4 3−, which were usually absorbed in hydrographically upstream zones B and W and regenerated in downstream zones H and G. NO3 uptake in zones B and W was concentration-dependent, and the uptake rate coefficient was estimated to be 0.58 and 0.67 m h−1, respectively. Both nutrient uptake in zone W and regeneration in zone H were enhanced in summer. The net regeneration ratio of NO3 /PO4 3− in zone H in summer ranged 5.2 to 34 (mean, 17.4), which was somewhat higher than previously measured NO3 /PO4 3− for sediment pore waters around this zone (1.1–8.5). Nutrient exchanges in zone S were relatively small, indicating semi-closed nutrient cycling at the sediment-water interface of this zone. NH4 + efflux from sediments was suggested in zone G. The data suggest that the spatial pattern of nutrient dynamics over the reef flat community was constrained by zonation of benthic biota, and that abiotic factors such as nutrient concentrations and flow rates, influenced nutrient exchange rates only in absorption-dominated communities such as zones B and W.  相似文献   

16.
Estimating nitrogen transformation rates in aquatic ecosystems by isotope dilution techniques is simplified by directly measuring nitrogen isotopic ratios for NH4+ in the water using high performance cation exchange liquid chromatography (HPLC). Modifications of HPLC conditions and implementation of a median-area method for retention time determination improved and linearized a previously reported sigmoid relationship between the retention time shift (RTshift) of the NH4+ peak and the ratio of [15NH4+]: [Total NH4+] in seawater fortified with 15NH4+. Increasing the temperature of the HPLC column from 47 to 85 °C increased mobile phase buffer flow rate relative to column back pressure, decreased the retention time for NH4+, and allowed the buffer pH to be optimized relative to the pK of NH4+. The use of median-area rather than maximum-height to define the retention time of NH4+ further improved the linearity (r > 0.995) of the relationship between the ratio [15NH4+]: [Total NH4+] and RTshift over the range of isotope ratios. Reduction of NO3 to NH4+ by adding zinc dust to acidified (pH 2) seawater or lakewater samples, followed by pH neutralization, and subsequent analysis of NH4+ isotope ratios by HPLC, extended application of the method to isotope dilution experiments with NO3. Advantages of this direct-injection method over mass-measurement approaches traditionally used for isotope dilution experiments include small sample size and minimal sample preparation.  相似文献   

17.
Above- and below-ground productivities and tissue N content were measured monthly to quantify N incorporation to sustain eelgrass growth in Koje Bay on the south coast of Korea from January to December 2002. N acquisition was also estimated through measurements of N uptake kinetics, tissue biomass, and in situ inorganic N concentrations in water column and sediments. Above- and below-ground productivities were highest in summer and lowest in late fall and winter. Leaf tissue N content was highest in December and lowest in July, while rhizome tissue N content was highest in October and lowest in April. Estimated monthly N incorporation by leaf tissues based on the leaf productivity and N content ranged from 0.4 g N m?2 month?1 in November to 2.0 g N m?2 month?1 in May. N incorporation by below-ground tissues ranged from 0.1 g N m?2 month?1 in February to 0.2 g N m?2 month?1 in October. Annual whole plant N incorporation was 14.5 g N m?2 y?1, and N incorporation by leaf tissues accounted for about 87 % of total N incorporation. Maximum uptake rate (V max ) and half saturation constant (K m ) of leaf NH4 + uptake were significantly lower than those of root NH4 + uptake. Above- and below-ground biomass ranged from 20.8 g DW m?2 and 8.6 g DW m?2 in winter to 350.0 g DW m?2 and 81.3 g DW m?2 in spring, respectively. NH4 + concentrations varied from 0.2 to 4.3 mM in water column and from 93.0 to 551.7 mM in sediment pore water. Based on these measurements, annual N acquisition by root tissues contributed slightly higher than that by leaf tissues to total plant N acquisition. During winter, monthly leaf N acquisition was lower than monthly leaf N incorporation. This implies that Z. marina has internal nitrogen retention system to offset the shortage and excess of nitrogen.  相似文献   

18.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

19.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   

20.
We report the first application of a biogeochemical model in which the major elemental composition of the phytoplankton is flexible, and responds to changing light and nutrient conditions. The model includes two phytoplankton groups: diatoms and non-siliceous picoplankton. Both fix C in accordance with photosynthesis-irradiance relationships used in other models and take up NO3 and NH4+ (and Si(OH)4 for diatoms) following Michaelis-Menten kinetics. The model allows for light dependence of photosynthesis and NO3 uptake, and for the observed near-total light independence of NH4+ uptake and Si(OH)4 uptake. It tracks the resulting C/N ratios of both phytoplankton groups and Si/N ratio of diatoms, and permits uptake of C, N and Si to proceed independently of one another when those ratios are close to those of nutrient-replete phytoplankton. When the C/N or Si/N ratio of either phytoplankton group indicates that its growth is limited by N, Si or light, uptake of non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of Droop (J. Mar. Biol. Ass. U.K 54 (1974) 825).We applied this model to the Bermuda Atlantic Time-series Study (BATS) site in the western Sargasso Sea. The model was tuned to produce vertical profiles and time courses of [NO3], [NH4+] and [Si(OH)4] that are consistent with the data, by adjusting the kinetic parameters for N and Si uptake and the rate of nitrification. The model then reproduces the observed time courses of chlorophyll-a, particulate organic carbon and nitrogen, biogenic silica, primary productivity, biogenic silica production and POC export with no further tuning. Simulated C/N and Si/N ratios of the phytoplankton indicate that N is the main growth-limiting nutrient throughout the thermally stratified period and that [Si(OH)4], although always limiting to the rate of Si uptake by diatoms, seldom limits their growth rate. The model requires significant nitrification in the upper 200 m to yield realistic time courses and vertical profiles of [NH4+] and [NO3], suggesting that NO3 is not supplied to the upper water column entirely by physical processes. A nitrification-corrected f-ratio (fNC), calculated for the upper 200 m as: (NO3 uptake—nitrification)/(NO3 uptake+NH4+ uptake) has annual values ranging from only 0.05–0.09, implying that 90–95% of the N taken up annually by phytoplankton is supplied by biological regeneration (including nitrification) in the upper 200 m. Reported discrepancies between estimates of organic C export based on seasonal chemical changes and POC export measured at the BATS site can be almost completely resolved if there is significant regeneration of NO3 via organic-matter decomposition in the upper 200 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号