首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous summit and parasitic eruptions of moderate potassium magnesian and high-alumina basalts and basaltic andesites, their mineralogic and geochemical features, and the composition of in situ chilled melt inclusions in the olivine of cinder lapilli discharged by Klyuchevskoi Volcano all provide evidence of the presence of magma chambers beneath the volcano. This is also supported by a dualism in the variation of CaO and Al2O3 concentrations in olivine and clinopyroxene during crystallization. The mineralogic features in the high-alumina basalts that were discharged by all parasitic eruptions of Klyuchevskoi provide evidence of magnesian magma being emplaced from a deeper chamber into a shallow high-alumina chamber. The distribution of incoherent elements in the volcano’s magnesian and aluminiferous rocks shows that they came from a single mantle source. The geochemical and mineralogic data are in good agreement with the results of geophysical surveys that concern the structure and properties of the lithosphere beneath Klyuchevskoi.  相似文献   

2.
The Chichontepec volcano is a Plio-Pleistocene composite volcano that erupted lavas ranging from high-alumina basalts to dacites. It experienced a caldera-forming paroxysmal eruption during the early Pleistocene. Pre-caldera lavas are mildly tholeiitic and they evolved mainly by low pressure crystal fractionation, notwithstanding the fact that most mafic lavas (low-MgO high-alumina basalts) retain traces of polybaric evolution. Conversely, post-caldera lavas, which are mainly pyroxene andesites, are clearly calc-alkaline, having evolved by open-system crystal fractionation. Sr–Nd isotopic data and trace elements characteristics indicate that the same mantle source was involved in the petrogenesis of these series. Modelling the AFC process showed that it did not play any role in the petrogenesis of these rocks; a crystal fractionation model is considered to be more relevant. A slight variation in the fractionating assemblage could have caused the transition from an early mildly tholeiitic trend to a late calc-alkaline one. Mineralogical evidence, mass-balance calculations and elemental chemistry support this hypothesis, assuming that the greater amount of pyroxene on the liquidus is at the expense of plagioclase; this would have prevented the trend in iron enrichment.  相似文献   

3.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

4.
Chemical compositions of schlieren in basalt flows are compared with those of the host rocks for tracing the fractionation trends of basalt magmas under extrusive conditions. In the Warner high-alumina basalt of California and in the tholeiite of Hawaii and Japan, total iron increases markedly from the host rock to the schlieren whileSiO 2 is nearly constant. In the high-alumina basalt of Huzi Volcano and in the tholeiite near Catania, Italy, total iron is nearly constant during fractionation whileSiO 2 increases. In basalts of the hypersthenic rock series or calc-alkali rock series from California, total iron is also nearly constant whileSiO 2 increases. The difference in fractionation trend in these flows is attributable to the difference of the state of oxidation of iron in the original magmas. Oxygen partial pressure of the magmas would not be maintained constant during the fractionation of extrusive bodies.  相似文献   

5.
Eruptive suites from Tonga (tholeiitic), Raoul Island (tholeiitic) and Macauley Island (high-alumina) are characterised by low alkalis, an absence of andesites in the range 56–65% silica, and restricted acidity for minor glassy differentiates (SiO2=65–68 %). These volcanics form a chain of islands overlying a seismic zone which extends from Tonga to the central volcanic region of North Island, New Zealand where a calc-alkaline series contains basaltic, andesitic and rhyolitic members in that order of increasing abundance. Within this continental suite, tholeiitic and high-alumina phases are recognised as closely similar to the intra-oceanic Tonga-Kermadec magma types and show petrochemical gradation into the medium-silica andesites, apparently by sialic assimilation.  相似文献   

6.
The island is formed entirely by subaerial, high-alumina, olivine basalts in dykes, flows and fragmental beds mapped in six formations around a well-defined volcanic centre, and an acid differentiate which forms an intercalated pumice tuff; nine new analyses are listed. Accidental blocks include mineralogically distinct basalts and gabbro from a buried tholeiitic suite. A late Pleistocene age is suggested for the island.  相似文献   

7.
Volcanological differences between the old and the recent lavas from Martinique, Lesser Antilles, are presented, showing that two volcanic series exist in this island:

Dash

  • a high-alumina basalt series generally mafic, line-grained, partly pillowed, with clinopyroxene-rich lavas which show iron enrichment tendancies en an A.F.M. plot;
  • a calc-alkaline (slightly potassic) series much more siliceous as a group, porphyric, predominantly sub-aerially erupted with orthopyroxene-rich lavas which show no iron enrichment.
  • The high-alumina basalt series is considered as having originated from a differentiation trend by fractionation of olivine, clinopyroxene and plagioclase. Lavas range from olivine basalt to tridymite-rich dacite. The calc-alkaline series probably derives from the contamination of the first suite but the occurence of hornblende-rich cumulates indicates the process of fractionation takes place too. Lavas range from orthopyroxene andesite and hornblende andesite to quartz-hornblende dacite and quartz-biotite dacite.  相似文献   

    8.
    The Upper Tertiary to Quaternary volcanic complex of Kouh-e-Shahsavaran in southeastern Iran is composed of calc-alkaline rocks of island are type (high-alumina basalts, basic andesites, andesites and dacites) even though it was emplaced on the continental basement. The volcanic rocks of the complex are genetically related and were probably derived by low-pressure fractional crystallization of high-Al basalts. The anomalously high content of Sr in some rocks probably reflects an accumulation of plagioclase. The trace element data are consistent with the origin of the parental magma by partial melting of an “enriched” upper mantle peridotite.  相似文献   

    9.
    The Apollo 17 KREEPy basalt is a unique lunar volcanic rock, observed only as clasts in the light friable breccia matrix (72275) of Boulder 1, Station 2 at Taurus-Littrow. Its status as a volcanic rock is confirmed by the absence of any meteoritic contamination, a lack of cognate inclusions or xenocrystal material, and low Ni contents in metal grains.The basalt was extruded 4.01 ± 0.04 b.y. ago, approximately contemporaneously with the high-alumina mare basalts at Fra Mauro; shortly afterwards it was disrupted, probably by the Serenitatis impact, and its fragments emplaced in the South Massif. The basalt, which is quartz-normative and aluminous, is chemically and mineralogically intermediate between the Apollo 15 KREEP basalts and the high-alumina mare basalts in most respects. It consists mainly of plagioclase and pigeonitic pyroxene in approximately equal amounts, and 10–30% of mesostatis. Minor phases outside of the mesostatis are chromite, a silica mineral, Fe-metal, and rare olivine; the mesostatis consists primarily of ilmenite, Fe-metal, troilite, and ferroaugite, set in a glassy or microcrystalline Si-rich base.Chemical and isotopic data indicate that an origin by partial melting of a distinct source region is more probable than hybridization or contamination of magmas, and is responsible for the transitional composition of the basalt. The moon did not produce two completely distinct volcanic groups, the KREEP basalts and the mare/mare-like basalts; some intermediate rock types were generated as well. A corresponding spectrum of source regions must exist in the interior of the moon.  相似文献   

    10.
    An analysis by difference technique yields estimates of H2O in basaltic and andesitic glasses, which are sufficiently accurate (± 1.4 percent absolute) to be useful. Glass inclusions trapped in large olivine crystals from tephra-rich eruptions have 1 to 5 percent H2O. The highest H2O contents are found in basaltic inclusions in magnesium rich olivines from Mount Shasta, California. Andesitic inclusions have less H2O. It seems probable that tephra-rich high-alumina magmas evolve in a vapor saturated environment at fairly shallow depths (few kilometers). This depth appears to be less for Medicine Lake Highlands than for Mount Shasta. Vapor saturation probably inhibits the rise of magma, thus the initial vapor content of a magma may govern its stagnation level. Volatile-rich parental magmas like Mount Shasta basalt probably tend to stagnate at deeper levels, crystallize early amphibole and produce comparatively calcic differentiates.  相似文献   

    11.
    The volcanic sequences in three vertical sections (starting from m.s.l.) of the Deccan trap flows around Mahape, Mumbra and Kalyan have been demarcated into zones, mainly based on the megascopic texture and the degree of abundance of vesicles and amygdules. Petrographic, mineralogical and modal study of twelve samples indicate that the basalts are tholeiitic and are characterised by lateral inhomogeneities. Petrochemical data are suggestive of limited differentiation, a hyperferric iron enrichment, a Hawaiian trend and an affinity to alkalic and high-alumina basalt.  相似文献   

    12.
    Geochemistry of Pliocene to recent volcanic rocks from Los Humeros caldera (19°30′ N – 19°50′ N and 97°15° W – 97°35′ W) in East-Central mexico is described. The volcanic rocks from this area seem to represent both alkali and high-alumina basalt series, or both calcalkaline and high-K calc-alkaline sequences. The available bulk-chemical analyses (23 this study and 18 from unpublished literature) show that the entire sequence of rocks from basalts to rhyolites are present in this area. Different degrees of partial melting of the source region followed by extensive shallow-level crystal differentiation seem to have taken place before most volcanic eruptions. These processes are perhaps the most important mechanisms for magma genesis in Los Humeros caldera. Geophysical studies in this area are not sufficient and more detailed geophysical surveys and a better geological interpretation are needed in order to delimit the underlying magma chamber.  相似文献   

    13.
    Abstract ' In situ basalts' represent the ridge magmatism at and close to the ancient trench-trench-ridge triple junction. Such basalts in the Amami, Mugi, and Setogawa accretionary complexes, Southwest Japan, were described and analysed. The geochemical data show that the ' in situ basalts' include all the types of basalts, ranging from alkali basalts and high-alumina basalts to tholeiites, and the compositions tend towards intermediate and silicic rocks. The data also reveal that the ridge basalts are indistinguishable both from the island arc and intraplate basalts, no affinities with mid-ocean-ridge basalts. The sub-ridge mantle adjacent to the triple junction had a component of sub-arc mantle, and this mantle heterogeneity can be generated by the formation of a slab window.  相似文献   

    14.
    A new Klyuchevskoy volcano eruptive cycle encompasses terminal (March 30, 1972 to August 23, 1974) and lateral (August 23, 1974 to December, 1974) eruption stages. The terminal eruption stage resulted in lava flows and parasitic cones that formed on the south-western flank of the volcano. Eruption products are moderately alkalic high-alumina olivine-bearing andesite-basalts. The terminal eruption stage was accompanied by volcanic earthquakes and volcanic tremor. The lateral eruption was accompanied by explosive earthquakes. Volcanic tremor was the most useful prognostic sign indicating the onset of the lateral eruption. Eruptive mechanisms are discussed.  相似文献   

    15.
    Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
    The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

    16.
    Seventy-one samples from seven volcanic centers of Basse Terre, Guadeloupe have been analysed. Low-K pyroxene andesite, associated with minor basaltic andesite and basalt is the dominant rock type, in all but two of the centers. Of these two exceptions, one. Mts. Caraibes, is composed mainly of high-alumina (plagioclase) basalt, while Les Deux Mamelles, are two prominent domes of sodic rhyolite, being one of the three known occurrences of this rock in the active are of the Lesser Antilles. On the basis of differences in such elements as K.O. Rb, and Ba, the various centers may be distinguished one from another, with the maximum differences being as large as the reported chemical differences between different islands in the are. This fact, together with the occurrence of both basalte and andesitic dominated volcanoes on the same island seem to argue against any systematic variation in chemistry of magma type along the arc.  相似文献   

    17.
    Contents of H2O, CO2 and Cl in well discharges from six explored geothermal systems of the Taupo Volcanic Zone, New Zealand, point to the existence of two distinct source fluids. The fluid present in discharges from systems along the eastern boundary is characterised by high CO2 contents, 1.6 ± 0.5 , at mole ratios of 3.9 ± 1.5. High (0.06) and (12) weight ratios in these waters suggest that all four constituents are derived from associated andesitic rock. Geothermal discharges in the western parts of the TVZ, dominated by rhyolitic magmatism, are characterised by low CO2 contents, 0.12 ± 0.05 , and low (0.14 ± 0.1) ratios. Again, relative Cl, B, Li and Cs contents agree with those of this potential source rock. High and ratios in the east are typical of fluids affected by the addition of volatiles released from subducted marine sediments. For the western systems, these ratios resemble more closely those expected for mantle-derived volatiles. The isotopic compositions of all deep waters point to the presence of variable amounts of a magmatic component, some 14 ± 5% in the eastern and 6 ± 2% in the western systems. The observed variations are explained in terms of interaction of volatiles released from the subducted sediments with material of the mantle wedge to form a volatile-charged, high-alumina basalt. Its convective rise, in a direction opposite to that of the down-going slab, leads to high enrichment in volatiles of the magmas generated beneath the eastern parts of the TVZ and increases their ability to intrude the continental crust. Further fractional crystallisation and assimilation leads to the formation of volatile-rich andesitic melts, partly extruded to form the volcanoes of the andesitic arc, partly intruded to act as source rocks for the high-gas geothermal systems. Batches of high-alumina basalt, depleted in subducted volatiles, travel farther west to pond beneath a zone of crustal extension. Following extensive fractionation, highly siliceous melts, carrying predominantly mantle-type volatiles, rise beneath the western part of the TVZ to supply both heat and volatiles to the geothermal systems there.  相似文献   

    18.
    We examine seismic and eruptive activity at Fuego Volcano (14°29′N, 90° 53′W), a 3800-m-high stratovolcano located in the active volcanic arc of Guatemala. Eruptions at Fuego are typically short-lived vulcanian eruptions producing ash falls and ash flows of high-alumina basalt. From February 1975 to December 1976, five weak ash eruptions occurred, accompanied by small earthquake swarms. Between 0 and 140 (average ≈ 10) A-type or high-frequency seismic events per day with M > 0.5 were recorded during this period. Estimated thermal energies for each eruption are greater by a factor of 106 than cumulative seismic energies, a larger ratio than that reported for other volcanoes.Over 4000 A-type events were recorded January 3–7, 1977 (cumulative seismic energy ≈ 109 joules), yet no eruption occurred. Five 2-hour-long pulses of intense seismicity separated by 6-hour intervals of quiescence accounted for the majority of events. Maximum likelihood estimates of b-values range from 0.7 ± 0.2 to 2.1 ± 0.4 with systematically lower values corresponding to the five intense pulses. The low values suggest higher stress conditions.During the 1977 swarm, a tiltmeter located 6 km southeast of Fuego recorded a 14 ± 3 microradian tilt event (down to SW). This value is too large to represent a simple change in the elastic strain field due to the earthquake swarm. We speculate that the earthquake swarm and tilt are indicative of subsurface magma movement.  相似文献   

    19.
    The volcano-tectonic evolution of Concepción,Nicaragua   总被引:1,自引:1,他引:0  
    We describe the evolution of Concepción volcano by integrating regional geology, eruptive activity, morphology, stratigraphy, petrology, structure and active deformation data. This Nicaraguan volcano is set close to the back limb of the northwest-trending Tertiary Rivas anticline, a regional structure that bounds the southwest side of Lake Nicaragua. Concepción rises 1,600 m above a 1-km-thick sequence of Quaternary lacustrine mud-stones. There is no record of volcanism in the lake prior to Concepción. In addition, the only nearby volcano, Maderas volcano, has not deposited material on Concepción because of the trade winds. Thus, Concepción (and Made ras, too) can be considered as pristine volcanic environments, unaffected by other centres. A topographic rise forms an annulus 20 km in diameter around the cone. The rise is created by thrust-related folds at the western base, where the trade winds have accumulated a thick sequence of tephra, and by mud diapirs at the eastern base where only lake mudstones are present. Four magmatic-eruptive episodes exist in the stratigraphic record. The first begins with primitive low-alumina basalt and subsequently evolves to dacitic compositions. The following three episodes begin with high-alumina basalts and evolve only to silicic andesites. The occurrence of the high-alumina basalt after the first episode is indicative of crystal fractionation at lower crustal depths. The first episode may be associated with a compressive phase of volcano evolution. In this phase, the edifice load compresses substrata, allowing a longer magma residence time and differentiation in a shallow reservoir (possibly located at the density contrast between the lake sediments and the Tertiary flysch). During the next three episodes the weak sediments below the volcano started to rupture and yield under its increasing load, beginning a thrusting/diapiring phase of volcano evolution. Because of outward thrusting, vertical and horizontal stresses above the chamber were reduced, allowing magma to erupt more easily and to reach a lesser degree of evolution. If we consider the future evolution of Concepción, the differentiation in the shallow reservoir has probably generated a cumulitic complex, which eventually will start to deform and spread, beginning another, this time plutonic, spreading phase. This phase, which may be beginning now, could allow less evolved magmas to be erupted again. Four components influence the phases of volcano evolution: (1) the regional geology that is the boundary condition of the environment, (2) the substrata rheology that controls deformation, (3) the load of the volcanic edifice and (4) the magma, which provides the input of mass and energy. Our model of volcanic evolution suggests that Concepción is a complex geologic environment. The volcanic activity, tectonics and hazards can only be constrained through a complete knowledge of the many components of this environment. Published online: 20 February 2003 Editorial responsibility: R. Cioni  相似文献   

    20.
    The Tantalite Valley Shear Zone is a major Precambrian, southeast-trending tectonic lineament extending for some 500 km (possibly as much as 800 km) along strike in southern Namibia (South West Africa) and the northern Cape Province of South Africa. A minimum right-lateral displacement of 85 km has been estimated for this shear zone, which is one of a number with similar orientations found in southwestern Africa. The shear zones may represent slip-lines produced during continental collision about 1000–1300 m.y. B.P.The shear zones have acted as the locus for the intrusion of high-alumina tholeiitic magmas which have led to the development of a number of mafic to ultramafic complexes situated in or near the zones, and particularly the Tantalite Valley Shear Zone. Igneous activity and tectonism took place over an extended period of time and some bodies have been partly or completely metamorphosed to metagabbro or amphibolite.Three complexes have been studied in detail and they are geochemically distinct from each other, such that they cannot be related to one another by simple processes of fractionation although the rock types within any one complex may be so related. All show broad similarities in that they are depleted in lithophile elements (Ba, Rb, Sr, Nb, Zr) and enriched in nickel relative to similar basalts found elsewhere.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号