共查询到20条相似文献,搜索用时 15 毫秒
1.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods. 相似文献
2.
Shane J. Cronin Vincent E. Neall Robert B. Stewart Alan S. Palmer 《Journal of Volcanology and Geothermal Research》1996,72(3-4)
A multi-parameter approach was used to correlate andesitic tephras in a complex tephra sequence ranging in age from ca. 23 to ca. 75 ka on the eastern ring plain of Ruapehu volcano, North Island. Field properties, combined with ferromagnesian mineral assemblages and mineral compositions, were required to map and correlate this sequence. Three tephra units could be identified based on their unique physical appearance, but other tephras could not be correlated on this basis alone. Hornblende and olivine proved to be valuable marker minerals enabling further distinction of two of the marker units recognised by field properties, as well as defining two further marker tephras. Unweathered titanomagnetite crystals, present in all of the tephras, were subjected to major-element analysis by electron microprobe. Canonical discriminant function analysis (DFA) of these analyses enabled the grouping and discrimination of tephra units, further aiding the identification of defined marker units, as well as defining new marker units. The titanomagnetite chemistry showed a strong relationship to the ferromagnesian mineralogy, showing that the ferromagnesian phenocrysts formed from the same melt or under the same melt conditions prior to eruption of each tephra. Canonical DFA was also applied to hornblende and olivine mineral analyses to identify further marker beds and to confirm identifications of previously defined units. This statistical analysis was found to be invaluable in reducing the large amount of compositional data from this study into a useable form for andesitic tephra correlation and mapping. 相似文献
3.
B.F. Houghton S.D. Weaver C.J.N. Wilson M.A. Lanphere 《Journal of Volcanology and Geothermal Research》1992,51(3)
Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. 相似文献
4.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake. 相似文献
5.
Ngauruhoe cone, in southern Taupo Volcanic Zone, New Zealand, has grown rapidly over the last 2,500 years in an alternation of effusive, strombolian, vulcanian, and sub-plinian eruptions of andesitic magma. At times growth has been 'staccato' in fashion as evidenced in the historical record. Each historical eruption typically lasted days to months, alternating with repose periods of years to decades. Major historic eruptions occurred in 1870 1949 1954-1955 and 1973-1975, encompassing wide variations in eruptive style over short timescales. The early period of cone building appears to have been dominated by a more continuous form of activity characterised by a series of numerous frequent explosive eruptions, with associated lava flows. The 2.2-km3 cone has grown in a piecemeal sectorial manner reflecting constant modification to the morphology of the summit, which has funnelled eruption products to specific sectors of the cone. Eruption rates can be calculated on several different timescales. Discharge rates averaged over individual eruptive pulses vary by two orders of magnitude (2.7-280 m3 s-1), reflecting variations in high level magma ascent rates and processes such as degassing, which are, in turn, reflected in contrasting eruptive styles. Lower rates (e.g. 0.65 m3 s-1) are obtained by averaging the discharge over an entire eruption lasting several months and may correspond to the ascent rate of magma batch(es) feeding the eruption. The long-term growth rate of Ngauruhoe is 0.9 km3 ky-1. This is an average rate reflecting the long-term deep supply rate of magma to crustal reservoirs. By looking at eruption rates on these different timescales we are better able to constrain processes occurring at various depths within the plumbing system. There are few detailed studies of the growth patterns of young volcanic cones, but such data are essential in understanding the dynamics of andesitic systems. More than 60 lavas and pyroclastic units mapped on different sectors of Ngauruhoe cone have been correlated by flow chronology and their distinctive compositions into five groups. Although the cone has grown rapidly, Ngauruhoe shows little evidence for the existence of large crustal magma reservoirs and long-lived magma batches. Instead, abrupt and non-systematic changes in magma chemistry and isotopic composition between and within the five groups indicate that the volcano has an open-system, multi-process, multi-directional character and erupts small (<0.1 km3) and short-lived (100-103 years) magma batches with no simple time-composition relationships between successive batches. 相似文献
6.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes. 相似文献
7.
8.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions. 相似文献
9.
Susan L. Donoghue Alan S. Palmer Elizabeth McClelland Kate Hobson Robert B. Stewart Vincent E. Neall Jèrôme Lecointre Richard Price 《Bulletin of Volcanology》1999,61(4):223-240
The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this
volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone,
where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped
into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic
flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define
as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history
and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year
period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered
by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring
plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation
of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal
welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously
considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important
new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre.
Received: 5 July 1998 / Accepted: 12 March 1999 相似文献
10.
11.
S.L. Donoghue J.A. Gamble A.S. Palmer R.B. Stewart 《Journal of Volcanology and Geothermal Research》1995,68(1-3)
We describe a magma mingling episode from Ruapehu volcano between two andesite magmas, one very much minor in volume relative to the other. The event acted to trigger eruption of the andesitic Pourahu pyroclastic flow which is preserved in a thick sequence of tephras and laharic deposits in the southeastern ring plain of the volcano. The predominant andesite is pale brown coloured and porphyritic containing phenocrysts of plagioclase-clinopyroxene-orthopyroxene-Fe-Ti oxides. Rare clasts of a darker andesite are different texturally, less vesicular, and contain distinctive microphenocrysts of plagioclase and quench olivine. Equally rare clasts, of streaky pumice consisting of interbanded ‘dark’ and ‘light’ andesite attest to mingling between these two andesite components.Chemical analyses of discrete clasts demonstrate that the Pourahu pyroclastic flow andesites span much of the compositional spectrum of Ruapehu andesites. This observation demonstrates heterogeneity in the products of a relatively small eruption. The darker clast analyses and those from associated distal fall deposits lie within the fields defined by the dominant light coloured clasts. Phenocryst and microphenocryst geothermometry suggest slightly higher temperatures in the dark component. However, glasses from groundmass and phenocryst inclusions in the same specimen may differ considerably, leading us to conclude that many phenocrysts are in fact xenocrystic and were incorporated in the melts as they migrated towards the surface.We prefer a model in which a small volume of hot andesite magma injects a vent-feeding magma chamber, triggering vesiculation and eruption. We infer that the process of magma withdrawal extended downward into the magma body causing the dark component to intermingle with the lighter (dominant) component, ‘sucking’ more dark magma into the chamber. Our observations are entirely consistent with the existence of a plexus of small, possibly interlinked magma chambers beneath Ruapehu. 相似文献
12.
《Journal of Volcanology and Geothermal Research》2006,157(4):294-310
Lava flows of the Mangawhero Formation (ca. 15–60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10–20 cm thick) have formed on the sides of large, rectangular, primary (0.5–3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (∼ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351–354]. 相似文献
13.
14.
The relics of a small, monogenetic, continental-shelf, Surtseyan volcano are preserved on the North Otago coast, South Island, New Zealand, in the late Eocene-early Oligocene Waiareka-Deborah volcanics. The succession consists of two parts, i. e. a lower interval of bedded lapilli tuffs and lapillistones, representing the eruptive, aggradational-cone-building phase, and an upper epiclastic sequence, representing the post-eruptive degradational phase. All of the preserved succession appears to have been deposited below storm wave base. The lapilli tuffs and lappillistones are subaqueous fall deposits, modified contemporaneously by downslope grain flow and turbidity current redeposition, and perhaps by local reworking caused by turbulent thermal eddies. The absence of major discordances in the lapilli tuffs suggests that the active eruptive period was very short-lived, perhaps lasting only a few days. The epiclastic succession consists of redeposited volcanic, skeletal, lime mud and glauconitic detritus, transported by debris flows and other mass flows. The initial epiclastic unit, a debris flow, appears to represent the sector collapse of a significant part of the cone. The appearance of fossils and rounded clasts low in the epiclastic succession coincides with stabilisation of the top of the submarine volcanic edifice, development of a wave-planed top, and its colonisation by a diverse fauna. Periodic storm activity swept material off the platform, redepositing it as marginal talus ramps. Surtla, a wholly submarine satellite volcanic centre of the 1963–1967 eruptive activity of Surtsey, is an excellent modern analogue for both the eruptive and post-eruptive phases of the Bridge Point-Aorere Point volcanic centre. By analogy with Surtla, the 120 metres of lapilli tuffs and lapillistones exposed on Bridge Point and Aorere Point accumulated in only several days. The 25 metres of reworked, glauconitic and fossiliferous volcaniclastics, represent thousands of years based on the time required for glauconite to form. 相似文献
15.
Steven Sherburn Bradley J. Scott Yuji Nishi Mituhiko Sugihara 《Journal of Volcanology and Geothermal Research》1998,83(3-4)
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source. 相似文献
16.
Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand 总被引:1,自引:0,他引:1
Shane J. Cronin V. E. Neall J. A. Lecointre M. J. Hedley P. Loganathan 《Journal of Volcanology and Geothermal Research》2003,121(3-4):271-291
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis. 相似文献
17.
Thirty-seven new K–Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief
episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably
the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained
are in the range 1.9–2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism
followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar
to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core,
Hawai‘i). These rates diminish sharply during the final 0.3–0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin
waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. 相似文献
18.
19.
C. J. N. Wilson B. F. Houghton B. J. Pillans S. D. Weaver 《Journal of Volcanology and Geothermal Research》1995,69(3-4)
Mayor Island is a peralkaline rhyolitic caldera volcano characterised by numerous, sector-confined pyroclastic deposits, together with lavas forming at least five composite shields. Correlation of sequences between sectors is difficult because of the scarcity of island-wide marker beds. However, eight distal calc-alkaline fall tephras (ca. 7.3 14C ka to 64 ka) from Okataina and Taupo volcanic centres in the nearby Taupo Volcanic Zone (TVZ) have been identified on the island. These “foreign” TVZ tephras provide marker planes to correlate activity in different sectors of Mayor Island volcano, and refine an eruptive chronology. At least seventeen pyroclastic eruptions and fourteen lava-producing events (including multiple, shield-forming events) have occurred in the past ca. 64 ka. Age controls provided by the calc-alkaline tephras confirm the extremely local dispersal characteristics of many of the Mayor Island eruptives and show that K/Ar ages as young as 25–33 ka on obsidians with 4.2–4.4% K2O are reliable. 相似文献
20.
R.A. Heath 《Continental Shelf Research》1986,5(6)
Current meter measurements from the west coast South Island New Zealand continental slope exhibit flows with dominant time scales of between 1 and 4 weeks as well as the expected diurnal and semidiurnal tides. The alongshore Doodson filtered daily mean flow components are marginally correlated with the alongshore wind. The onshore flow components are marginally correlated with the envelope of the square of the semidiurnal and diurnal tidal flow, which is taken as a measure of energy loss from the tide.Observations from the southern flank of the Challenger Plateau, 200 km north of the continental slope observations and further offshore, also exhibit similar long-period variations. However, here the alongshore flow is more strongly correlated with alongshore wind than at the southern site. 相似文献