首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The transition from the last glacial and beginning of Bølling–Allerød and Pre‐Boreal periods in particular is marked by rapid increases in atmospheric methane (CH4) concentrations. The CH4 concentrations reached during these intervals, ~650–750 ppb, is twice that at the last glacial maximum and is not exceeded until the onset of industrialization at the end of the Holocene. Periods of rapid sea‐level rise as the Last Glacial Maximum ice sheets retreated and associated with ‘melt‐water pulses’ appear to coincide with the onset of elevated concentrations of CH4, suggestive of a potential causative link. Here we identify and outline a mechanism involving the flooding of the continental shelves that were exposed and vegetated during the glacial sea‐level low stand and that can help account for some of these observations. Specifically, we hypothesize that waterlogging (and later, flooding) of large tracts of forest and savanna in the Tropics and Subtropics during the deglacial transition and early Holocene would have resulted in rapid anaerobic decomposition of standing biomass and emission of methane to the atmosphere. This novel mechanism, akin to the consequences of filling new hydroelectric reservoirs, provides a mechanistic explanation for the apparent synchronicity between rate of sea‐level rise and occurrence of elevated concentrations of ice core CH4. However, shelf flooding and the creation of transient wetlands are unlikely to explain more than ~60 ppb of the increase in atmospheric CH4 during the deglacial transition, requiring additional mechanisms to explain the bulk of the glacial to interglacial increase. Similarly, this mechanism has the potential also to play some role in the rapid changes in atmospheric methane associated with the Dansgaard–Oeschger cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Danube Delta-Black Sea region of Romania is an important wetland, and this preliminary study evaluates the significance of this region as a source of atmospheric CH4. Measurements of the mixing ratio and δ13C in CH4 are reported from air and water samples collected at eight sites in the Danube Delta. High mixing ratios of CH4 were found in air (2500–14,000 ppb) and dissolved in water samples (∼1–10 μmol L−1), demonstrating that the Danube Delta is an important natural source of CH4. The intercepts on Keeling plots of about −62‰ show that the main source of CH4 in this region is microbial, probably resulting primarily from acetate fermentation. Atmospheric CH4 and CO data from the NOAA/ESRL (National Oceanic and Atmospheric Administration/Earth System Research Laboratory) were used to make a preliminary estimate of biogenic CH4 at the Black Sea sampling site at Constanta (BSC). These data were used to calculate ratios of CH4/CO in air samples, and using an assumed CH4/CO anthropogenic emissions ratio of 0.6, fossil fuel emissions at BSC were estimated. Biogenic CH4 emissions were then estimated by a simple mass balance approach. Keeling plots of well-mixed air from the BSC site suggested a stronger wetland source in summer and a stronger fossil fuel source in winter.  相似文献   

3.
Cycling of methane (CH4) in Tomales Bay, a 28-km2 temperature estuary in northern California with relatively low inputs of organic carbon, was studied over a 1-yr period. Water column CH4 concentrations showed spatial and temporal variability (range=8–100 nM), and were supersaturated with respect to the atmosphere by a factor of 2–37. Rates of net water column CH4 production-oxidation were determined by in situ experiments, and were not found to be significantly different from zero. Fluxes across the sediment-water interface, determined by direct measurement using benthic chambers, varied from ?0.1 μmol m?2 d?1 to +16 μmol m?2 d?1 (positive fluxes into water). Methane concentrations in the two perennial creeks feeding the bay varied annually (140–950 nM); these creeks were a significant CH4 source to the bay during winter. In addition, mass-balance calculations indicate a significant additional inter CH4 source, which is hypothesized to result from storm-related runoff from dairy farms adjacent to the bay. Systemwide CH4 budgets of the 16-km2 inner bay indicate benthic production (110 mol d?1) and atmospheric evasion (110 mol d?1) dominated during summer, while atmospheric evasion (160 mol d?1) and runoff from dairy farms (90 mol d?1) dominated during winter.  相似文献   

4.
The coastal waters of the mid-Atlantic region of the United States receive inputs of atmospheric pollutants as a consequence of being located downwind from major industrial and urban emissions. These inputs are potentially the largest received by any marine area of the country. Of current interest is the atmospheric input of dissolved inorganic nitrogen (DIN = NO3 ?+NH4 +). We have conducted a first-order examination of the magnitude of atmospheric DIN deposition relative to other large-scale inputs for Delaware Bay, a partially urbanized mid-Atlantic coastal plain estuary. The following loading terms: direct atmospheric deposition, indirect atmospheric loading, urban point discharges, fluvial input, benthic flux, and salt marsh export were evaluated. On an annual basis, municipal-industrial effluents provide a dominant source (ca. 40%) of the DIN inputs to the estuary. Total (wet plus dry) atmospheric deposition accounts for about 15% of the total annual DIN inputs. However, during summer, which is characterized by low river-flow and seasonally maximum atmospheric loading, this figure increases to around 25%. Although atmospheric input can satisfy only a fraction of the primary production demands, this summer flux may represent an ecologically important source of external DIN, half of which is directly deposited to surface photic zones where it is readily available for biological uptake.  相似文献   

5.
中国农田的温室气体排放   总被引:70,自引:2,他引:70  
中国是一个农业大国,拥有约1.33百万平方公里的农田。这些田地的种植、翻耕、施肥、灌溉等管理措施不仅长期改变着农田生态系统中的化学元素循环,而且给全球气候变化带来影响。农业生态系统对全球变化的影响主要是通过改变3种温室气体,即二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)在土壤-大气界面的交换而实现的。为了分析多种因素(如气候、土壤质地、农作物品种及各种农田经营管理措施等)对农业土壤释放CO22222222  相似文献   

6.
Peatlands are a large potential source of methane (CH4) to the atmosphere. In order to investigate the effects of climate change on CH4 emission from northern ombrotrophic peatlands, a simulation model coupling water table dynamics with methane emission was developed for the Mer Bleue Bog in Ontario, Canada. The model was validated against reported values of CH4 flux from field measurements and the model outputs exhibited high sensitivity to acrotelm thickness, leaf area index, transmissivity and slope of water table. With a 2–4°C temperature rise over the 4-year simulation period, the rate of CH4 release dropped significantly to under 0.1 mg m−2 day−1. On the other hand, mean CH4 emission increased by >26-fold when the increase in precipitation was >15%. When looking at the combined effects, the highest CH4 release (13.3 mg m−2 day−1) was attained under the scenario of 2°C temperature rise and 25% precipitation increase. Results obtained in this study highlight the importance of avoiding more extreme climate change, which would otherwise lead to enhanced methane release from peatlands and further atmospheric warming through positive feedback.  相似文献   

7.
A geochemical study of surface sediments from Pranhita-Godavari Basin, Andhra Pradesh, India was carried out using light hydrocarbon compounds to assess the hydrocarbon potential of the basin. Suite of 80 soil samples were collected from the depth of 2.5 m and analyzed for adsorbed light gaseous hydrocarbons namely methane (CH4), ethane (C2H6) and propane (C3H8) in Gas chromatograph. Compound specific Carbon isotope ratios for CH4 and C2H6 were also determined using GC-C IRMS (Gas Chromatograph Combustion Isotope Mass Spectrometer). The presence of moderate to low concentrations of methane (CCH4 C_{CH_4 } : 1 to 138 ppb), ethane (H4{H_4 }: 1 to 35 ppb) and propane (CC3 H8 C_{C_3 H_8 } : 1 to 20 ppb) was measured in the soil samples. Carbon isotopic composition of d13 CCH4 \delta ^{13} C_{CH_4 } ranges between −27.9 to −47.1 ‰ and d13 CC2 H6 \delta ^{13} C_{C_2 H_6 } ranged between −36.9 to −37.2 ‰ (V-PDB) indicating that these gases are of thermogenic origin. Study of soil samples suggests the area has good potential for hydrocarbon.  相似文献   

8.
Pollen preserved in a peat deposit from a large swamp, the Old Field in the Mississippi River Valley near Advance, Missouri, records radiocarbon-dated vegetation changes between 9000 and about 3000 years ago. The principal feature of both the percentage and influx pollen diagrams is the replacement of arboreal pollen, primarily Quercus, Fraxinus, and Cephalanthus, with Gramineae and NAP between 8700 and 5000 years BP. This vegetation shift is interpreted as reflecting a decrease in the extent of the Old Field swamp and its associated bottomland forest species along with the expansion of a grass-dominated herb community, as a result of a reduction in available ground water. The desiccation of the swamp during this period indicates a reduction in precipitation within the ground-water source area and a shift to a drier climate in the southern Midwest. The pollen suggests that the lowest water levels and driest climate in southeastern Missouri lasted from 8700 to 6500 years BP, at which time there is a partial reappearance of swamp species. Relatively dry conditions, however, continued until at least 5000 years BP. Although pollen influx data are lacking from the upper part of the profile, the relative pollen frequencies suggest an increase in trees after 5000 BP. The replacement of the arboreal vegetation by grasses and herbs between 8700 and 5000 years BP reflects the period of maximum expansion of the Prairie Peninsula in southeastern Missouri. The Old Field swamp provides the first pollen evidence that the vegetational changes along the southern border of the Prairie Peninsula were chronologically similar to those on the northern and northeastern margins.  相似文献   

9.
《Quaternary Science Reviews》2005,24(10-11):1111-1121
The early part of marine isotopic Stage 11 near 400,000 years ago provides the closest analog to Holocene insolation levels of any interglaciation during the era of strong 100,000-year climatic cycles. The CH4 concentration measured in Vostok ice fell to ∼450 ppb, and CO2 values to ∼250 ppm. These natural decreases contrast with the increases in recent millennia and support the early anthropogenic hypothesis of major gas emissions from late-Holocene farming. During the same interval, δD values fell from typical interglacial to nearly glacial values, indicating a major cooling in Antarctica early in Stage 11. Other evidence suggests that new ice was accumulating during the closest insolation analog to the present day: a major increase in δ18Oatm at Vostok, a similar increase in marine δ18O values, and re-initiation of ice rafting in the Nordic Sea. The evidence permits extended (>20,000 year) intervals of Stage 11 interglacial warmth in the Antarctic and North Atlantic, yet it also requires that this warmth ended and a new glacial era began when insolation was most similar to recent millennia. The Holocene CO2 anomaly was produced only in part by direct anthropogenic emissions; over half of the anomaly resulted from the failure of CO2 values to fall as they had during previous interglaciations because of natural responses, including a sea-ice advance in the Antarctic and ice-sheet growth in the northern hemisphere.  相似文献   

10.
《Quaternary Science Reviews》2003,22(15-17):1597-1629
The SPECMAP models of orbital-scale climate change (Imbrie et al., Paleoceanography 7 (1992) 701, Paleoceanography 8 (1993) 699) are the most comprehensive to date: all major climatic observations were analyzed within the framework of the three orbital signals. Subsequently, tuning of signals in Vostok ice to insolation forcing has fixed the timing of greenhouse-gas changes closely enough to permit an assessment of their orbital-scale climatic role. In addition, evidence from several sources has suggested changes in the SPECMAP δ18O time scale. This new information indicates that the timing of CO2 changes at the periods of precession and obliquity does not fit the 1992 SPECMAP model of a “train” of responses initiated in the north, propagated to the south, and later returning north to force the ice sheets. In addition, analysis of the effects of rectification on 100,000-year climatic signals reveals that all have a phase on or near that of eccentricity. This close clustering of phases rules out the long time constants for 100,000-year ice sheets required by the 1993 SPECMAP model.A new hypotheses presented here revives elements of an earlier CLIMAP view (Hays et al., Science 194 (1976a) 1121) but adds a new assessment of the role of greenhouse gases.As proposed by Milankovitch, summer (mid-July) insolation forces northern hemisphere ice sheets at the obliquity and precession periods, with an ice time constant derived here of 10,000 years. Changes in ice volume at 41,000 years drive ice-proximal signals (SST, NADW, dust) that produce a strong positive CO2 feedback and further amplify ice-volume changes. At the precession period, July insolation forces ice sheets but it also drives fast and early responses in CH4 through changes in tropical monsoons and boreal wetlands, and variations in CO2 through southern hemisphere processes. These CH4 and CO2 responses enhance insolation forcing of ice volume.Climatic responses at 100,000 years result from eccentricity pacing of forced processes embedded in obliquity and precession cycles. Increased modulation of precession by eccentricity every 100,000 years produces 23,000-year CO2 and CH4 maxima that enhance ablation caused by summer insolation and drive climate deeper into an interglacial state. When eccentricity modulation decreases at the 100,000-year cycle, ice sheets grow larger in response to obliquity forcing and activate a 41,000-year CO2 feedback that drives climate deeper into a glacial state. Alternation of these forced processes because of eccentricity pacing produces the 100,000-year cycle. The 100,000-year cycle began 0.9 Myr ago because gradual global cooling allowed ice sheets to survive during weak precession insolation maxima and grow large enough during 41,000-year ice-volume maxima to generate strong positive CO2 feedback.The natural orbital-scale timing of these processes indicates that ice sheets should have appeared 6000–3500 years ago and that CO2 and CH4 concentrations should have fallen steadily from 11,000 years ago until now. But new ice did not appear, and CO2 and CH4 began anomalous increases at 8000 and 5000 years ago, respectively. Human generation of CO2 and CH4 is implicated in these anomalous trends and in the failure of ice sheets to appear in Canada.  相似文献   

11.
Despite their primary contribution to climate change, there are still large uncertainties on the sources and sinks of the main greenhouse gases: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). A better knowledge of these sources is necessary to understand the processes that control them and therefore to predict their variations. Indeed, large feedbacks between climate change and greenhouse gas fluxes are expected during the 21st century. Sources and sinks of these gases generate spatial and temporal gradients that can be measured either in situ or from space. One can then estimate the surface fluxes, either positive or negative, from concentration measurements through a so-called atmospheric inversion. Surface measurements are currently used to estimate the fluxes at continental scales. The high density of spaceborne observations allows potentially a much higher resolution. Several remote sensing techniques can be used to measure atmospheric concentration of greenhouse gases. These techniques have motivated the development of spaceborne instruments, some of them already in space and others under development. However, the accuracy of the current estimates is still not sufficient to improve our knowledge on the greenhouse gases sources and sinks. Rapid improvements are expected during the forthcoming years with a strong implication of the scientific community and the launch of dedicated instruments, optimized for the measurement of CO2 and CH4 concentrations.  相似文献   

12.
The Baltic Sea is an intra‐continental brackish water body. Low saline surface water, the so‐called Baltic outflow current, exits the Baltic Sea through the Kattegat into the Skagerrak. Ingressions of saline oxygen‐rich bottom water enter the Baltic Sea basins via the narrow and shallow Kattegat and are of great importance for the ecological and ventilation state of the Baltic Sea. Over recent decades, progress has been made in studying Holocene changes in saline water inflow. However, reconstructions of past variations in Baltic Sea outflow changes are sparse and hampered because of the lack of suitable proxies. Here, we used the relative proportion of tetra‐unsaturated C37 ketones (C37:4 %) in long‐chain alkenones produced by coccolithophorids as a proxy for outflowing Baltic Sea water in the Skagerrak. To evaluate the applicability of the proxy, we compared the biomarker results with grain‐size records from the Kattegat and Mecklenburg Bay in addition to previously published salinity reconstructions from the Kattegat over the last 5000 years. All Skagerrak records showed an increase in C37:4 % that is accompanied by enhanced bottom water currents in the Kattegat and western Baltic Sea over the past 3500 cal. a BP, indicating an increase in Baltic Sea outflow. This probably reflects higher precipitation in the Baltic Sea catchment area owing to a re‐organization of North Atlantic atmospheric circulation with an increased influence of wintertime Westerlies over the Baltic catchment from the mid‐ to the late Holocene.  相似文献   

13.
The atmospheric levels of carbon dioxide (CO2) and other greenhouse gases (GHGs) have increased dramatically since the industrial revolution. The atmospheric enrichment with CO2 and other GHGs has resulted in multiple negative consequences: such as the increase in the average temperature and the rise of the sea level. Hence, there is a growing interest in developing feasible methods to reduce the atmospheric levels of these gases. One of these strategies is to enhance C sequestration through the increase of soil organic carbon (SOC) pool by the amendment of agricultural soils with sewage sludge. However, there is considerable uncertainty about the effects (positive or negative) of sewage sludge applications on the SOC pool. Thus, a simple approach developed under laboratory conditions is presented to discern the effect of a single sewage sludge application of 50 t ha−1 on the short-term SOC pool in 60 contrasting agricultural soils. The role of soil factors in the C sequestration of the recently added carbon was also studied. The application of sewage sludge supposed a mean increase of 1.7 ± 1.6 g SOC kg−1, with peak increases of up to 3.8 g SOC kg−1 and decreases of up to 4.6 g SOC kg−1. The initial SOC contents conditioned the C sequestration after sewage sludge application, and no other soil property was related.  相似文献   

14.
Latest field research and palæoenvironmental reconstructions have revealed that within less than 6000 years the eastern Sahara experienced a dramatic climatic change similar to that in the western Sahara, passing from hyperaridity to semi-aridity (dry savanna) to its present hyperarid state. Groundwater levels started to rise about 9300 years before present (14C years BP), leading to the formation of a mosaic of freshwater lakes and swamps. Within a few decades, the aquifers were loaded and the palæopiezometric surface was as much as 25 m higher than it is today. The uplands generated up to 800 km long fluvial systems, which put an end to the endorheic drainage of the region and functioned as migration paths for large savanna mammals. These wetter conditions persisted in Western Nubia during the Holocene until ca 5000 years BP The climatic deterioration began around 5700 years BP as shown by evaporitic sediments. Reversal events prior to aridification during the Late Holocene were not recorded systematically in the sediments of the eastern Sahara because of the stability of the ecosystems. Changes in land-surface conditions such as palæolakes, swamps and vegetation created water vapour sources that generated local rainfall and buffered short dry spells. Radiocarbon-dated charcoal indicates that Neolithic human occupation culminated during this Early Holocene wet phase and ended ca 2000 years after the fading of the wet phase at about 3000 years BP, when the shallow aquifers were exhausted.  相似文献   

15.
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.  相似文献   

16.
Late Quaternary histories of two North American desert biomes—C4 grasslands and C3 shrublands—are poorly known despite their sensitivity and potential value in reconstructing summer rains and winter temperatures. Plant macrofossil assemblages from packrat midden series in the northern Chihuahuan Desert show that C4 grasses and annuals typical of desert grassland persisted near their present northern limits throughout the last glacial–interglacial cycle. By contrast, key C3 desert shrubs appeared somewhat abruptly after 5000 cal. yr BP. Bioclimatic envelopes for select C4 and C3 species are mapped to interpret the glacial–interglacial persistence of desert grassland and the mid‐to‐late Holocene expansion of desert shrublands. The envelopes suggest relatively warm Pleistocene temperatures with moist summers allowed for persistence of C4 grasses, whereas winters were probably too cold (or too wet) for C3 desert shrubs. Contrary to climate model results, core processes associated with the North American Monsoon and moisture transport to the northern Chihuahuan Desert remained intact throughout the last glacial–interglacial cycle. Mid‐latitude effects, however, truncated midsummer (July–August) moisture transport north of 35° N. The sudden expansion of desert shrublands after 5000 cal. yr BP may be a threshold response to warmer winters associated with increasing boreal winter insolation, and enhanced El Niño–Southern Oscillation variability. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

17.
This study investigates the occurrence of greenhouse gases (GHGs) and the role of groundwater as an indirect pathway of GHG emissions into surface waters in a gaining stretch of the Triffoy River agricultural catchment (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations, the stable isotopes of nitrate, and major ions were monitored in river and groundwater over 8 months. Results indicated that groundwater was strongly oversaturated in N2O and CO2 with respect to atmospheric equilibrium (50.1 vs. 0.55 μg L?1 for N2O and 14,569 vs. 400 ppm for CO2), but only marginally for CH4 (0.45 vs. 0.056 μg L?1), suggesting that groundwater can be a source of these GHGs to the atmosphere. Nitrification seemed to be the main process for the accumulation of N2O in groundwater. Oxic conditions prevailing in the aquifer were not prone for the accumulation of CH4. In fact, the emissions of CH4 from the river were one to two orders of magnitude higher than the inputs from groundwater, meaning that CH4 emissions from the river were due to CH4 in-situ production in riverbed or riparian zone sediments. For CO2 and N2O, average emissions from groundwater were 1.5?×?105 kg CO2 ha?1 year?1 and 207 kg N2O ha?1 year?1, respectively. Groundwater is probably an important source of N2O and CO2 in gaining streams but when the measures are scaled at catchment scale, these fluxes are probably relatively modest. Nevertheless, their quantification would better constrain nitrogen and carbon budgets in natural systems.  相似文献   

18.
Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimates have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using a flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH4 m?2 d?1, 42 mg CH4 m?2 d?1, and 82 mg CH4 m?2 d?1, respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores ofAviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH4 flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments.  相似文献   

19.
This work reports the application of thermodynamic models, including equations of state, to binary (salt-free) CH4-H2O fluid inclusions. A general method is presented to calculate the compositions of CH4-H2O inclusions using the phase volume fractions and dissolution temperatures of CH4 hydrate. To calculate the homogenization pressures and isolines of the CH4-H2O inclusions, an improved activity-fugacity model is developed to predict the vapor-liquid phase equilibrium. The phase equilibrium model can predict methane solubility in the liquid phase and water content in the vapor phase from 273 to 623 K and from 1 to 1000 bar (up to 2000 bar for the liquid phase), within or close to experimental uncertainties. Compared to reliable experimental phase equilibrium data, the average deviation of the water content in the vapor phase and methane solubility in the liquid phase is 4.29% and 3.63%, respectively. In the near-critical region, the predicted composition deviations increase to over 10%. The vapor-liquid phase equilibrium model together with the updated volumetric model of homogenous (single-phase) CH4-H2O fluid mixtures (Mao S., Duan Z., Hu J. and Zhang D. (2010) A model for single-phase PVTx properties of CO2-CH4-C2H6-N2-H2O-NaCl fluid mixtures from 273 to 1273 K and from 1 to 5000 bar. Chem. Geol.275, 148-160), is applied to calculate the isolines, homogenization pressures, homogenization volumes, and isochores at specified homogenization temperatures and compositions. Online calculation is on the website: http://www.geochem-model.org/.  相似文献   

20.
The present study evaluated the effect of plant species on methane (CH4) emission and microbial populations in three types of soil–plant systems. Results showed large variation of CH4 flux rate ranging from 1.35 to 212.61 mg CH4 m?2 h?1. Emission peak of CH4 occurred in July. No significant difference was found in the non-vegetation system spanning 2 years. Compared with non-vegetation, vegetation systems had much higher flux of CH4, and obvious seasonal variation was observed. The polyculture system planted with Zizania latifolia (Z. latifolia) and Phragmites australis (P. australis) released higher CH4 fluxes than the mono system (P. australis), reflecting that Z. latifolia growth could simulate CH4 emission. The fluorescence in situ hybridization (FISH) results support the characteristics of CH4 fluxes. Much higher methanotrophs amount and lower methanogens amount from the mono system than those from the polyculture system was observed indicating that Z. latifolia growth may limit the oxygen transportation resulting in higher CH4 emission. The polyculture system has the highest potential of CH4 emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号