首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mommark sequence represents a nearly complete record of sedimentation in the Eemian (MIS 5e), and the diatom succession covers almost the entire interglacial. A floating chronology of the deposits is based on correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. The diatom succession starts with a short freshwater stage followed by a similarly episodic transitional brackish phase, which began c. 300 years after the beginning of the Eemian interglacial. A few hundred years later, simultaneously with the start of deposition of the shallow marine sediment, Cyprina Clay, the flora turns almost fully marine, suggesting salinities clearly higher than at present. The culmination of the marine transgression occurs close to the climatic optimum of the Eemian interglacial, c. 3000 years after the beginning of the interglacial. In the several metres thick Cyprina Clay, only marginal changes in the composition of diatom taxa are noticed. According to the diatom stratigraphy and chronostratigraphy based on regional pollen zones, the total duration of the Eemian Sea phase with brackish/marine conditions was c. 10 500 years. As the sedimentation of the Cyprina Clay ends, the proportions of diatom species thriving in freshwater increase, but the marine taxa remain common. The mixture of species with non-compatible ecological requirements suggests allochthonous input from freshwater and/or tidal estuary environment. The results of this study are consistent with studies of other aquatic fossil assemblage data from this site.  相似文献   

2.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

3.
The marine Quaternary of Vendsyssel has been studied in a series of new boreholes in the area, and the climatic development is discussed on the basis of foraminiferal assemblages and stable isotopes. The foraminiferal zones are correlated with previously published records from northern Denmark, and the spatial local and regional distribution is discussed in details based on the new evidence. The new data show that the marine sedimentation in Vendsyssel was not continuous from the Late Saalian to the Middle Weichselian, as previously thought. For example, there is indication of a hiatus at our key site, Åsted Vest in the central part of Vendsyssel, at the transition between regional foraminiferal zones N4 and N3, i.e. at the Late Saalian (MIS 6) – Eemian (MIS 5e) transition. The hitherto most complete Early Weichselian succession (zone N2) in Vendsyssel is presented from Åsted Vest. Deposits from the Early Weichselian sea‐level lowstands (MIS 5d and 5b) may, however, be missing in parts of the area. Two major breaks in the marine deposition during the Middle Weichselian represent glacial advances into northern Denmark. The first event occurred just after deposition of the regional foraminiferal zone N2 (late MIS 4), and the second event in the middle part of zone N1 (early MIS 3). Zone N1 is succeeded by a series of non‐marine units deposited during the sea‐level lowstand of the Weichselian maximum glaciation (late MIS 3 and MIS 2), including deeply incised tunnel valleys, which have been refilled with non‐marine sediments during the Late Weichselian. Vendsyssel was inundated by the sea again during the Late Weichselian, at c. 18 kyr BP. Subsequently, the marine conditions were gradually changed by forced regression caused by local isostatic uplift, and around the Weichselian–Holocene transition most of Vendsyssel was above sea level. A continuous deposition across the Late Weichselian–Holocene boundary only occurred at relatively deep sites such as Skagen. The environmental and climatic indications for Vendsyssel are in accordance with the global sea‐level curve, and the Quaternary record is correlated with the oxygen isotope record from the NorthGRIP ice core, as well as the marine isotope stages.  相似文献   

4.
Past environmental changes in the Baltic area are discussed on the basis of pollen and spores recovered from marine sediments in a series of cliff sections at Mommark, in southern Denmark. The sediment succession represents Jessen & Milthers' (1928) Eemian pollen zones c-h, or Andersen's (1961 1975) zones E1/2-E7, as well as the earliest Weichselian pollen zone i, or EW-1, the Herning Stadial. A correlation with annually laminated German sequences (e.g. Bispingen) indicates that the sequence spans approximately 11 000 years. Marine deposition began c. 300 years after the beginning of the Eemian Interglacial Stage and continued to shortly before the end of pollen zone E7, at c. 10 600 years after the beginning of the Eemian. Sedimentation rates varied through the time period represented by the sequence, with initial deposition relatively rapid at c. 0.35 cm yr-1 for the first c. 300 years. Rates then decreased to 0.029 cm yr-1 for the next 2700 years and remained low, though varying, throughout the rest of the sequence. Overall, the rates indicate that sediment supply was highly restricted throughout the interglacial, possibly reflecting the dense forest vegetation that colonized the hinterland.  相似文献   

5.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   

6.
Analysis of sediment and aquatic vegetation samples collected along the Onkaparinga estuary, South Australia, revealed the distribution patterns of benthic and epi-benthic micro-organisms, specifically foraminifera and ostracods. The total assemblage provided an assemblage ‘snap shot,’ contemporaneous with the environmental conditions at the time of sampling, as well as seasonally and time-averaged distribution information. Species richness is low in the upper reaches of the estuary and favours species with a wide salinity tolerance. Observed species richness increases seawards. Species richness and abundance within species is greater where there is conspicuous aquatic vegetation. Thus, species richness and distribution appear to be related to the proximity to the sea and the provision of diverse habitable substrate. Foraminiferal species, Ammonia beccarii and Elphidium excavatum, and ostracods belonging to the genera Paracypria, Xestolebris and Leptocythere dominate the total assemblage. These species are characteristic of euryhaline conditions. The mutual maximum occurrences of Reophax barwonensis, Ammobaculites barwonensis and Trochammina inflata signify mid-estuarine conditions. In the lower regions of the estuary, the appearance of shallow marine species of foraminifera such as Elphidium crispum and Quinqueloculina poeyana, and ostracods Bairdoppilata sp., Hemicytherura spp. and Paranesidea spp. signifies interactions with the adjacent inner shelf coastal waters. Throughout the entire length of the estuary, the presence of vegetal substrate created a strong numerical bias towards live occurrences of the ostracods Paracypria sp. and Xestolebris cedunaensis. These species are potentially useful as proxies for paleoenvironmental interpretations of estuarine sediments.  相似文献   

7.
A 120 m thick marine Quaternary sequence resting on Upper Cretaceous chalk at Nørre Lyngby has been stratigraphically analysed on the basis of its foraminiferal content. The foraminiferal zones in the Nørre Lyngby boring are compared with corresponding zones from borings and outcrops in adjacent areas in Vendsyssel and Kattegat, and a general zonation covering the whole area is proposed. The lower part of the marine sequence at Nørre Lyngby represents deposits of pre-Eemian, possibly Saalian, and Eemian age. The Early Weichselian seems to be missing, while most of the Middle and Late Weichselian foraminiferal zones known from Vendsyssel occur. The foraminiferal zones and the corresponding macrofossil zones are correlated with the oxygen isotope stratigraphy. A cross-section through deposits from the Saalian-Eemian-Weichselian marine basin in North Jutland and the Kattegat illustrates the development of the basin through this period of time. The centre of basin subsidence shifted from the southwest in the pre-Eemian to the northeast in the Eemian, and remained there throughout the Weichselian.  相似文献   

8.
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300–11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c . 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.  相似文献   

9.
We discuss water oxygen isotopes (δ18Ow) and carbon isotopes of dissolved inorganic carbon (δ13CDIC) of brine‐enriched shelf water (BSW) from Storfjorden (southern Svalbard) in comparison to Recent benthic foraminiferal δ18Oc and δ13Cc calcified in the same water. We determined relatively high δ18Ow values of 0.15±0.03‰ VSMOW in BSW below sill depth at temperatures below ?1.8 °C, and high δ18Oc values of 3.90±0.18‰ VPDB. Such high BSW δ18Ow cannot significantly deplete 18Ow contents of Arctic Ocean deep water; furthermore, such high δ18Oc cannot be distinguished from δ18Oc values of 3.82±0.12‰, calcified in warmer Arctic and Nordic seas intermediate and deeper waters. Today, in Storfjorden low benthic δ13Cc and high δ18Oc reflect the low δ13CDIC and relatively high δ18Ow of BSW. High benthic δ18Oc is in contrast to expected low δ18Oc as brine rejection is widely thought to predominantly take place in surface water diluted by meteoric water with very low δ18Ow. Low epibenthic δ13Cc values of 0.50±0.12‰ partly reflect low δ13CDIC caused by enhanced uptake of atmospheric low δ13CCO2 decreased by anthropogenic activities. An adjustment for preindustrial higher values would increase δ13Cc by about 0.6‰. Therefore, in Storfjorden brine formed before the industrial era would be characterized by both high δ13Cc as well as high δ18Oc values of benthic foraminiferal calcite. Our data may cast doubt on scenarios that explain negative excursions in benthic foraminiferal stable isotope records from the Atlantic Ocean during cold stadials in the last glacial period by enhanced brine formation in Nordic seas analogously to modern processes in Storfjorden.  相似文献   

10.
《Quaternary Science Reviews》2004,23(20-22):2231-2246
Palaeoclimatic changes through the last 1200 calibrated years have been documented by high-resolution multi-proxy studies of three cores from about 400 m water depth on the North Icelandic shelf. Benthic and planktonic foraminiferal assemblages and stable isotope values, as well as ice rafted debris (IRD) concentrations, are compared with diatom-based sea-surface water temperatures and the reconstructed mean temperature for the Northern Hemisphere. Changes in surface and bottom water characteristics are mainly due to variations in the strength of the relatively warm, high-salinity Irminger Current and the cold East Icelandic Current. The time period between 1200 and around 7–800 cal. (years) BP, including the Medieval Warm Period, was characterized by relatively high bottom and surface water temperatures due to the inflow of Atlantic water masses. After that, a general temperature decrease in the area marks the transition to a period with increased influence of the East Icelandic Current and, at the sea floor, the Norwegian Sea Deep Water. This corresponds to the transition to the Little Ice Age. After about 3–400 cal. BP, the inflow of cold East Icelandic Current was further enhanced. In particular, this had a strong influence on the surface waters, while the sea floor was under some influence of Atlantic water masses, resulting in stratification of the water masses. There is no clear indication of any warming in the area during the last decades.  相似文献   

11.
Diatoms and ostracods from the Nar Valley, west Norfolk, England are analysed with a view to establishing marine and freshwater palaeoenvironments of the Hoxnian interglacial Stage. No microfossils were recovered from the non-marine facies, but rich assemblages of both fossil groups were extracted from the marine Nar Valley Clay and these, together with associated sedimentological evidence, indicate that the environment of deposition changed from a relatively nearshore, muddy shelf setting, to one that was more littoral and subject to higher current regimes, with salinities remaining at normal marine levels through both depositional phases. It is suggested that this sequence may reflect a regressional phase towards the close of the Hoxnian Stage, with palaeotemperature evidence from at least one ostracod species suggesting a warmer climate than at present. Non-recovery of microfossils from some of the samples analysed is attributed to unfavourable palaeoenvironmental conditions and/or post-depositional ground-water percolation.  相似文献   

12.
Stable oxygen and carbon isotope data from a lacustrine sequence at Grænge, southeast Denmark, revealed distinct cnvironmental changes related to Late Weichselian climatic development in the region. Comparison of isotopic records obtained from sedimentary carbonates and freshwater molluscs enabled reconstruction of changes in the lacustrine environment. The degree of thermal and chemical stratification of the lake was evaluated and supported by pollen data from an earlier study of the site. During the Allerød interstadial, dimictic and stagnant conditions characterized the lake, whereas the stratification was disturbed during thc Younger Dryas stadial probably as a result of deforestation and increased wind impact. The origin of sedimentary carbonates was examined by mineralogic and morphologic studies. A considerable input of clastics and detrital carbonates, associated with pronounced enrichment of 18O and 13C. wds recorded in the Younger Dryas sediments indicating soil degradation and increased erosion. A climatic warming preceding the Pleis-tocene/Holocene boundary is clearly reflected in the different stable isotope records and in the lithostratigraphy.  相似文献   

13.
A high‐resolution record, covering 9.3–0.2 ka BP, from the sub‐arctic Stjernsund (70°N) was studied for benthic foraminiferal faunas and stable isotopes, revealing three informally named main phases during the Holocene. The Early‐ to Mid‐Holocene (9.3–5.0 ka BP) was characterized by the strong influence of the North Atlantic Current (NAC), which prevented the reflection of the Holocene Climatic Optimum (HCO) in the bottom‐water temperature. During the Mid‐Holocene Transition (5.0–2.5 ka BP), a turnover of benthic foraminiferal faunas occurred, Atlantic Water species decreased while Arctic‐Polar species increased, and the oxygen isotope record showed larger fluctuations. Those variations correspond to a period of global climate change, to spatially more heterogeneous benthic foraminiferal faunas in the Nordic Seas region, and to regionally diverging terrestrial temperatures. The Cool Late Holocene (2.5–0.2 ka BP) was characterized by increased abundances of Arctic‐Polar species and a steady cooling trend reflected in the oxygen isotopes. In this period, our record differs considerably from those on the SW Barents Sea shelf and locations farther south. Therefore, we argue that regional atmospheric cooling triggered the late Holocene cooling trend. Several cold episodes centred at 8.3, 7.8, 6.5, 4.9, 3.9 and 3.3 ka BP were identified from the benthic foraminiferal faunas and the δ18O record, which correlated with marine and atmospherically driven proxy records. This suggests that short‐term cold events may result from reduced heat advection via the NAC or from colder air temperatures.  相似文献   

14.
Examination of a 10 m piston core from the eastern Kattegat revealed marine sediments spanning a period from the late Middle Weichselian to the Early Holocene. The oldest marine unit in the core is 14C-dated to about 30,000–36,000 years BP. These sediments represent the Middle Weichselian Sandnes/Denekamp-Hengelo Interstadial (upper part of stable isotope stage 3) and can be correlated to marine deposits from several localities in the Kattegat region by means of foraminifera. The Late Weichselian deposits comprise sediments from the Oldest Dryas Stadial and the Allerød Interstadial. The intervening periods are not represented in the sequence (hiatuses). Sediments from the latest part of the Early Holocene Preboreal period succeeding the Allerod sequence indicate a considerable hiatus spanning 2000–3000 years around the Weichselian/Holocene boundary. The late Preboreal faunas document a high freshwater inflow during this period, and stable conditions seem not to have been reached in the area until a few hundred years later, in the Boreal period. Comparison with boxcore material from the same site documents a reduction of the energy level of the bottom currents some time between c. 8000 and 800 years BP.  相似文献   

15.
Past environmental changes in the Baltic area are discussed on the basis of foraminifera and ostracods as well as pollen and spores in marine sediments in cliff sections at Ristinge Klint, Langeland, southern Denmark. The sediment succession represents Jessen & Milthers' (1928) pollen zones d-g or Andersen's (1961, 1975) zones E2-E5, and a correlation with the annually laminated Bispingen sequence indicates that the sequence spans about 3400 years. Marine conditions seem to have occurred at c. 300-365 years after the beginning of the Eemian Interglacial, close to fully marine conditions developing by c. 2500 years. This early date of the marine ingression pre-dates that of most previous studies in the region by several hundred years, but it post-dates the initial marine ingression in the easternmost Baltic. A marked change in salinity at c. 650 years after the beginning of the Eemian was presumably caused by an opening of the Danish Belts. An indication of a major alteration in current activity is registered at c. 3000 years after the beginning of the interglacial. The recognition of the relative timing of these events may be significant for the understanding of the opening of connections between the North Sea, the Baltic and the White Sea.  相似文献   

16.
C and O isotope composition of Middle-Upper Miocene and Lower Pliocene carbonates from Kerch-Taman Region (Eastern Paratethys) have been studied in order to reconstruct palaeoenvironmental variability and post-sedimentation changes. The δ13C and δ18О values of the Upper Sarmatian to Lower Pliocene organogenic carbonates reflect the desalinization of paleobasins, global Late Miocene Cooling, and increase in seasonal temperature fluctuations. Isotopic composition of the Middle Sarmatian organogenic carbonates was strongly influenced by evaporation processes, high bioproductivity, and local submarine methane emissions. Warm climate and low bioproductivity together with unstable hydrological regime during the Late Chokrakian and the Karaganian times influenced the isotope composition of primary carbonates. Calcite shell of Spiratella sp. (δ13C =–0.4‰ and δ18О =–0.4‰) from Tarkhanian sediments was formed in warm marine environment. Dolomitization prevails over other secondary mineralization in the studied carbonate rocks. Two groups of secondary dolomites that are characterized by negative and positive δ13C values have been recognized. Lowe δ13C values (up to–31.4‰) in dolomites indicate the influence of both dissolved inorganic carbon (DIC) from oxidized organic matter (Сorg) and methane. Dolomites with positive δ13C values (7.0 and 7.8‰) associat with migration of CO2- and CH4-containing saline groundwater.  相似文献   

17.
On the basis of different photosynthetic pathways.there is an obvious difference in δ^13C values between C3 and C4 plants,In terms of this characteristic,we analyzed the organic carbon content (forestlands:1.81%-16.00%;farmland:0.45%-2.22%) and δ^13C values(forestlands:-23.86‰--27.12‰;farmland:-19.66‰--23.26‰)of three profile-soil samples either in farmland or in forestland near the Maolan Karst virgin forest,where there were developed plant C3 plants previously and now are C4 plants.Results showed that the deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in soil organic matter and thus soil fertility.  相似文献   

18.
Foraminiferal stable isotopes and assemblages from Franz Victoria and St. Anna troughs provide a valuable record of freshwater and Atlantic Water flows to the northern Barents and Kara seas from deglaciation to present. The δ18O and δ13C of planktonic Neogloboquadrina pachyderma (s) and benthic Elphidium excavatum were up to 1.4‰ lower than present at ca 13, 11.5, and 10 14C ka (global sea-level corrected), mostly reflecting substantial freshwater inputs coincident with glacial–marine sediment deposition. Cassidulina teretis exceeded 40% of benthic foraminifera ca 13 and 10 14C ka, indicating subsurface penetrations of Atlantic Water. The transition to postglacial marine conditions is marked by a 1‰ rise in foraminiferal δ18O and a sharp fall in % C. teretis soon after 10 14C ka. These changes imply reduced inputs of freshwater and Atlantic Water. Subsequent isotopic and foraminiferal assemblage variations reflect changing Atlantic Water conditions “upstream” in the Nordic Seas and shifts between the warm Fram Strait and cold Barents Sea branches of Atlantic Water. We hypothesize that glacial-isostatically induced deepening by up to 150 m influenced Atlantic Water inflows to the northern Barents Sea during deglaciation and the Holocene. Thus, effects of isostatic recovery have to be factored into paleoceanographic reconstructions.  相似文献   

19.
20.
The Ixtahuacan Sb-W deposits are hosted by upper Pennsylvanian to Permian metasedimentary rocks of the central Cordillera of Guatemala. The deposits consist of gold-bearing arsenopyrite, stibnite and scheelite. Arsenopyrite and scheelite are early in the paragenesis, occurring as disseminations in pyritiferous black shale/sandstone and in argillaceous limestone, respectively. Some stibnite is disseminated, but the bulk of the stibnite occurs as massive stratabound lenses in black shales and in quartz-ankerite veins and breccias, locally containing scheelite.Microthermometric measurements on fluid inclusions in quartz and scheelite point to a low temperature (160–190°C) and low to moderate salinity (5–15 wt% NaCl eq.) aqueous ore fluid. Abundant vapour-rich inclusions suggest that the fluid boiled. Carbon dioxide was produced locally as a result of interaction of the aqueous fluid with the argillaceous limestone. Bulk leaching experiments and SEM-EDS analyses of decrepitated fluid inclusion residues indicate that the ore-bearing solution was NaCl-dominated. The 18O values of quartz, ankerite and scheelite from mineralized veins range from 19.7 to 20.5, 18.1 to 20.0 and 7.0 to 8.4 respectively. The average temperature calculated from quartz-scheelite oxygen isotopic fractionation is 170°C. The oxygen isotopic composition of the fluid, interpreted to have been in equilibrium with these minerals, ranged from 5.7 to 7.6, and is considered to represent an evolved meteoric water. Diagenetic or syngenetic pyrite has a sulphur isotopic composition of 0.5±0.3 which is consistent with bacterial reduction of sulphate. The 34S values of arsenopyrite and stibnite range from –2.8 to 2.0 and –2.7 to –2.3 respectively, and are though to reflect sulphur derived from pyrite.The Ixtahuacan deposits are interpreted to have formed at low temperature (<200°C) and a depth of a few hundred metres from a low fO2 (10–49–10–57), high pH (7–8) fluid. Arsenic was probably transported as arsenious acid, antimony and gold as thio-complexes and tungsten as the complex HWO 4 .A model is proposed in which a meteoric fluid, heated by a felsic intrusion at depth, was focused to shallow levels along faults. The interaction of the fluid with pyritiferous beds caused the deposition of arsenopyrite as a result of sulphidation and/or decreasing fO2; gold probably co-precipitated with As or was adsorbed onto the arsenopyrite. The precipitation of stibnite was caused by boiling. Scheelite deposited in response to the increase in Ca2+ activity which accompanied interaction of the ore fluid with the argillaceous limestones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号