首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄山层状云和对流云降水不同高度的雨滴谱统计特征分析   总被引:2,自引:1,他引:1  
李慧  银燕  单云鹏  金祺 《大气科学》2018,42(2):268-280
根据2011年6~7月在黄山不同高度采用PARSIVEL雨滴谱仪测得的雨滴谱数据,对不同海拔高度上两类(层状云和对流云)降水粒子谱的微物理特征量、Gamma函数拟合以及雨滴的下落速度进行对比分析,结果表明:对流云降水的雨水含量和降水强度、雨滴的各类尺度参数和数浓度都比相同位置上层状云降水的大,同类降水中,山腰的雨滴尺度大于山顶和山底,这可能与各观测点和云底相对位置的不同有关;随降水强度增加,雨滴的质量加权平均直径Dm逐渐增大,广义截距参数(log10Nw)的标准差逐渐减小。拟合结果表明各高度的雨滴谱都比较符合Gamma分布,由拟合参数分析雨滴谱的演变,发现相对于对流云降水,层状云降水粒子谱随高度的变化较小,雨滴谱的演变较为稳定。此外,本文还对两类降水中雨滴的下落速度及影响落速的因素进行了分析。  相似文献   

2.
X波段双极化雷达在北京夏季降水估测中的应用   总被引:3,自引:1,他引:2  
利用X波段双极化雷达和地面自动雨量站数据对北京地区2009年夏季降水进行分析,先采用低通滤波、衰减订正等方法对数据质量进行控制,提取了单位差分传播相移Kdp之后,分别拟合出X波段双极化雷达参数与降水之间的两个关系式:Zh=159R1.37及R=13.9Kdp0.81,最后再分别利用这些拟合公式对北京地区进行降雨估测。结果表明:雷达用这两个公式估测的降雨量与地面实测降雨量有较好的一致性;且当每小时降雨量大于10mm时,Kdp-R的估测比Zh-R估测更稳定、准确;通过平均标准差统计可知,Kdp-R估测精度明显高于Zh-R估测精度。  相似文献   

3.
Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into pre-monsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.  相似文献   

4.
Mêdog and Nagqu are two typical regions of the Tibetan Plateau with different geographical locations and climate regimes. These differences may lead to discrepancies in the raindrop size distributions (DSDs) and precipitation microphysical processes between the two regions. This paper investigates discrepancies in the DSDs using disdrometer data obtained during the rainy season in Mêdog and Nagqu. The DSD characteristics are studied under five different rainfall rate categories and two precipitation types (stratiform and convective). For the total datasets, the number concentrations of drops with diameters D > 0.6 (D < 0.6) mm are higher (lower) in Nagqu than in Mêdog. The fitted normalized gamma distributions of the averaged DSDs for the five rainfall rate categories show that Nagqu has a larger (lower) mass-weighted mean diameter Dm (normalized intercept parameter, lgNw) than Mêdog does. The difference in Dm between Nagqu and Mêdog increases with the rainfall rate. Convective clusters in Nagqu could be identified as continental-like, while convective precipitation in Mêdog could be classified as maritime-like. The relationships between the shape factor μ and slope parameter Λ of the gamma distribution model, the radar re?ectivity Z, and the rainfall rate R are also derived. Furthermore, the possible causative mechanism for the notable DSD variation between the two regions during the rainy season is illustrated using reanalysis data and automated weather station observations. Cold rain processes are mainly responsible for the lower concentrations of larger drops observed in Nagqu, whereas warm rain prevails in Mêdog, producing abundant small drops.  相似文献   

5.
研究不同云系降水的微物理参数特征,对研究降水机制、人工影响天气、雷达定量测量降水、数值预报模式中微物理参数化方案的选择等都有一定意义。本文针对2015年济南地区的液态降水过程,基于微降水雷达(Micro Rain Radar,简称MRR)资料,研究不同云系降水的微物理参数。在400 m高度上,层状云降水0.02~0.2 mm h-1雨强样本数很大,但对累计降水量的贡献很小。混合云和对流云降水在大粒子端数浓度较高。在垂直方向上,层状云降水中的粒子的尺度较集中,中值体积直径D0平均在1 mm左右,随高度的变化不大。对流云降水在雨强大于20 mm h-1时,强垂直气流(包括上升气流和下沉气流)对粒子直径的影响较大,进而影响空中微降水雷达反演降水参数的数据质量。而垂直气流的影响对层状云降水影响较小,在层状云降水时,微降水雷达可以用来分析零度层亮带以下雨滴谱在垂直方向上的演变。  相似文献   

6.
利用布设在秦皇岛市抚宁地区的OTT Parsivel激光雨滴谱仪和卢龙地区S波段天气雷达,对2017—2019年4—9月共23次降水过程进行了观测,并分析了基于雨滴谱参数(滴谱粒子数N(D)和粒子直径大小D0)计算的雷达反射率因子ZD和雷达探测的雷达反射率因子ZR的差异ZC。结果表明,N(D)主要集中在130~530个范围内,ZC标准差随着N(D)的增大而逐渐减少;D0主要集中在0.8~1.6 mm范围内,ZC标准值在D0<1.2 mm范围内随着D0的增大而逐渐减少,D0在1.2~1.6 mm范围内趋于稳定;ZD主要集中在15~40 dBZ范围内,ZC标准差在15~35 dBZ范围内随着ZD值增大而减小。  相似文献   

7.
This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M~(1.5),and the relationship between reflectivity and rain intensity was Z = 256I~(1.4).  相似文献   

8.
This paper investigates the potential for developing schemes that classify convective and stratiform precipitation areas using the high infrared spectral resolution of the Meteosat Second Generation—Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI). Two different classification schemes were proposed that use the brightness temperature (BT) Τ 10.8 along with the brightness temperature differences (BTDs) Τ 10.8Τ 12.1, Τ 8.7Τ 10.8, and Τ 6.2Τ 10.8 as spectral parameters, which provide information about cloud parameters. The first is a common multispectral thresholding scheme used to partition the space of the spectral cloud parameters and the second is an algorithm based on the probability of convective rain (PCR) for each pixel of the satellite data. Both schemes were calibrated using as a reference convective\stratiform rain classification fields derived from 87 stations in Greece for six rainy days with high convective activity. As a result, one single infrared technique (TB10) and two multidimensional techniques (BTDall and PCR) were constructed and evaluated against an independent sample of rain gauge data for four daily convective precipitation events. It was found that the introduction of BTDs as additional information to a technique works in improving the discrimination of convective from stratiform rainy pixels compared to the single infrared technique BT10. During the training phase, BTDall performed slightly better than BT10 while PCR technique outperformed both threshold techniques. All techniques clearly overestimate the convective rain occurrences detected by the rain gauge network. When evaluating against the independent dataset, both threshold techniques exhibited the same performance with that of the dependent dataset whereas the PCR technique showed a notable skill degradation. As a result, BTDall performed best followed at a short distance by PCR and BT10. These findings showed that it is possible to apply a convective/stratiform rain classification algorithm based on the enhanced infrared spectral resolution of MSG-SEVIRI, for nowcasting or climate purposes, despite the highly variable nature of convective precipitation.  相似文献   

9.
三维雷达反射率资料用于层状云和对流云的识别研究   总被引:8,自引:0,他引:8  
肖艳姣  刘黎平 《大气科学》2007,31(4):645-654
基于层状云和对流云的雷达反射率分布的三维形态特征,提出了识别层状云和对流云的6个候选识别参数,它们分别是:组合反射率及其水平梯度,反射率因子等于35 dBZ的回波顶高及其水平梯度、垂直累积液态水含量及其密度。通过分析候选识别参数分布图和选取的反射率垂直剖面图,用人机交互方式挑选“真实的”层状云和对流云区,统计这6个候选识别参数分布的概率密度特征;最后确定把分布概率密度更集中的组合反射率水平梯度、35 dBZ的回波顶高的水平梯度和垂直累积液态水含量密度作为识别参数,利用模糊逻辑法进行层状云和对流云的识别。用三个个例进行了识别试验,并把用模糊逻辑法识别的结果与用改进的巅峰值法识别的结果进行了比较,结果表明:用模糊逻辑法和改进的巅峰值法都能合理地识别大部分层状云和对流云;由于改进的巅峰值法只考虑了反射率分布的二维形态特征,它容易把对流核的外围识别成层状云,把厚实的层状云识别成对流云,而考虑了反射率分布的三维形态特征的模糊逻辑法在这两个方面有很大改善。  相似文献   

10.
Rainfall characteristics of the Madden–Julian oscillation (MJO) are analyzed primarily using tropical rainfall measuring mission (TRMM) precipitation radar (PR), TRMM microwave imager (TMI) and lighting imaging sensor (LIS) data. Latent heating structure is also examined using latent heating data estimated with the spectral latent heating (SLH) algorithm.The zonal structure, time evolution, and characteristic stages of the MJO precipitation system are described. Stratiform rain fraction increases with the cloud activity, and the amplitude of stratiform rain variation associated with the MJO is larger than that of convective rain by a factor of 1.7. Maximum peaks of both convective rain and stratiform rain precede the minimum peak of the outgoing longwave radiation (OLR) anomaly which is often used as a proxy for the MJO convection. Stratiform rain remains longer than convective rain until ∼4000 km behind the peak of the mature phase. The stratiform rain contribution results in the top-heavy heating profile of the MJO.Associated with the MJO, there are tri-pole convective rain top heights (RTH) at 10–11, ∼7 and ∼3 km, corresponding to the dominance of afternoon showers, organized systems, and shallow convections, respectively. The stratiform rain is basically organized with convective rain, having similar but slightly lower RTH and slightly lags the convective rain maximum. It is notable that relatively moderate (∼7 km) RTH is dominant in the mature phase of the MJO, while very tall rainfall with RTH over 10 km and lightning frequency increase in the suppressed phase. The rain-yield-per flash (RPF) varies about 20–100% of the mean value of ∼2–10 × 109 kg fl−1 over the tropical warm ocean and that of ∼2–5 × 109 kg fl−1 over the equatorial Islands, between the convectively suppressed phase and the active phase of MJO, in the manner that RPF is smaller in the suppressed phase and larger in the active phase.  相似文献   

11.
The characteristics of the raindrop size distribution(DSD) during regional freezing rain(FR) events that occur throughout the phase change(from liquid to solid) are poorly understood due to limited observations. We investigate the evolution of microphysical parameters and the key formation mechanisms of regional FR using the DSDs from five disdrometer sites in January 2018 in the Jianghan Plain(JHP) of Central China. FR is identified via the size and velocity distribution measured from a disdrom...  相似文献   

12.
2000—2007年登陆台风中闪电活动与降水特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用TRMM卫星LIS, PR和TMI资料,对2000—2007年41个登陆我国的台风中闪电活动和降水特征进行分析。结果表明:台风中的闪电活动整体较弱,相对而言,外雨带中的闪电活动最强,其次是眼壁,内雨带最弱,而眼壁的闪电密度最大。闪电活动沿台风径向有两个明显的高值区,主峰出现在距台风眼375 km的外雨带,次峰出现在距台风眼55 km的眼壁和内雨带相交的边界附近。台风中对流云降水面积远小于层云降水面积,其中外雨带中的对流云降水面积最大,其次是眼壁,内雨带最小;但对流降水对总降水量的贡献与层云相当。眼壁和内雨带中的对流云和层云的降水回波平均高度都小于外雨带。分析表明:TMI观测到的85.5 GHz极化修正亮温 (TPC85.5) 越低,闪电发生概率越大,外雨带具有最低的TPC85.5。有、无闪电发生区域的平均6 km高度雷达反射率因子和TPC85.5差异明显。台风区域内,闪电活动位置对应的平均6 km雷达回波强度普遍大于20 dBZ,而无闪电发生位置普遍低于30 dBZ。  相似文献   

13.
Viktor Makitov   《Atmospheric Research》2007,83(2-4):380-388
The exact quantitative estimation of hailstorm precipitation intensity, allowing determining successfully the crop hail damage, is extremely necessary while carrying out of programs of experimental researches of the hail clouds as well as at realization of operative projects on hail suppression. On the other hand, the possibility of obtaining a trustworthy information about changes of hailfall intensity during cloud seeding operations enables to judge more objectively about seeding effect and to make a decision about its beginning and termination. Just because of such a parameter, the kinetic energy of hailfalls presents a great interest for the researchers. As it is known, measuring the kinetic energy of hailfalls is carried out both directly by ground network of hailpads, and by radar methods. The accuracy of the radar methods of the hail kinetic energy measurement strongly depends not only on the choice of an optimum formula for calculation but also on the algorithm used for separating hail and rain parts of radar echo and on the way it was used in the hail–rain mixture zone of precipitation.The method of calculating the kinetic energy of the hailfalls, based on empirical dependence of hail probability Ph on a height of a zone of a radar echo with a reflectivity of 45 dBZ above a level of zero isotherm ΔH45, is offered in the given work. The algorithm of separating hail and rain parts of a radar echo and the way it was applied in a hail–rain mixture zone is described. The examples of hail streaks in contours of radar reflectivity and in isopleths of hail kinetic energy obtained using the given algorithm are shown.In Mendoza province (Argentina), a hail suppression project (1993–1997) for the analysis of the vertical structure of a radar echo with Zmax > 45 dBZ, such new parameter is an integral altitude, was used. This dimensionless parameter is most sensitive to such a condition of radar echo when all four contours of increased reflectivity Z45, Z55, Z65, and Z75 synchronously reach the maximal values. The analysis of time distributions of the main radar parameters of hailstorms on a background of values of integral altitude is resulted. It is shown that local hailfall maximum intensities on the ground are observed after the achievement of maximum integral altitude with a certain delay. It enables to predict zones of the greatest hail damage in a mode of radar observation.  相似文献   

14.
雷达回波强度与雨滴谱参数的相关性研究   总被引:2,自引:2,他引:0  
在雷达定量探测降水方面,目前大都采用雷达回波强度与降水强度的相关性来定量估算,但雷达回波强度与降水强度并非一一对应。本文利用从庐山和南京收集到的雷达观测资料和同步Parsivel观测到的雨滴谱数据,建立雷达回波强度与不同雨滴谱参数的函数关系,将由确定的函数关系式拟合后的雷达回波强度与雷达实测的回波强度作对比,以检验假定函数关系式的合理性,同时通过对比两地两类云降水拟合值的相对误差,给出了函数关系式中的最优y选项,为雷达定量估算降水量寻找新的途径。研究结果表明:庐山和南京两地两类云降水的雨滴谱参数对雷达回波强度的拟合普遍较好,其中对流云降水的拟合都明显好于层状云降水。两地层状云降水中各个雨滴谱参数对雷达回波强度的拟合曲线都大体相近,而对流云降水中,不同雨滴谱参数对雷达回波强度的拟合曲线差异较大。南京两类云降水拟合的相对误差要小于庐山两类云降水拟合的相对误差。除庐山对流云降水外,DV是两地两类云降水拟合公式中最优的y选项。而庐山对流云降水拟合式中,以N和DP的拟合最佳。  相似文献   

15.
微降水雷达测量精度分析   总被引:2,自引:0,他引:2  
利用数值模拟的方法,讨论了利用微降水雷达MRR(Micro Rain Radar)雷达功率谱密度反演降水参数时,MIE散射(米散射)效应、垂直气流(包括上升气流、下沉气流)对数浓度N、雷达反射率Z、雨强I、液态含水量LWC等参数的影响。MIE散射主要影响直径为1.20~4.00 mm的粒子,MIE散射效应影响的N、Z、I、LWC偏差的平均值分别为2.74 m-3 mm-1、1.47 d BZ、0.0061 mm h~(-1)、0.0004 g m-3。下沉气流使反演液滴直径偏大,上升气流使得反演的液滴直径偏小,下沉气流的影响更大,尤其是对低层影响大于高层。例如,在300 m高度上,当液滴直径为2.67 mm时,下沉气流为2.00 m s-1时,理论上反演的直径为8.07 mm,超出了MRR探测的阈值,其相对误差值能接近200%。下沉气流使得反射率谱向大粒子方向平移,且谱型展宽;上升气流则相反。将MRR资料与同步观测的THIES雨滴谱仪数据进行比对,分析MRR资料的可靠性。选取2015年4月1日01~12时(协调世界时)山东济南的一次降水过程,将MRR在300 m高度上反演的雷达反射率因子、雨强、数浓度、中值体积直径与雨滴谱仪资料进行对比。结果表明:两种仪器探测的Z、I、N、中值体积直径D0在时间序列上都有较好的吻合度,变化趋势和幅度相近,Z、I、D0的平均偏差分别为1.19 d BZ、0.34 mm h~(-1)、0.36 mm。MRR反演的I值偏大,而粒子直径偏小,分析了产生偏差的主要原因,除了探测系统偏差、分析方法本身存在的偏差外,上升气流导致的偏差不容忽视。这些结果初步验证了微降水雷达观测的功率谱密度及其反演方法的可靠性。  相似文献   

16.
Doppler sodar derived values of the temperature structure parameter C infT sup2 , the vertical velocity variance ¯′w 2, and the rate of dissipation of turbulent energy ?, were measured during unstable conditions above the Lannemezan heterogeneous site. The vertical profiles of these turbulent parameters, normalized by the classical convective scales are compared with those obtained using the same acoustic sounder above an homogeneous site during convective conditions. The typical decrease of C infT sup2 as Z -4/3 is partially verified on the heterogeneous site: for the lower levels, C infT sup2 exhibits an increase with Z whereas for the intermediate levels C infT sup2 . decreases as Z -4/3. For the upper levels, C infT sup2 increases with Z due to a signal-to-noise ratio lower than 1. The vertical profiles of ¯′w 2 above the two sites are rather similar. However, near the base of the convective inversion Z i , the values measured on the heterogeneous site are more scattered. The same scattering is also observed with the ? values; moreover, for the lower levels (Z<0.17Z i ) the increase of ? as Z decreases is more important at the homogeneous site than at the heterogeneous one. It is suggested that these particular features observed at lower levels above the heterogeneous site are mainly related to a complex local boundary layer induced by the near environment of the sodar (vegetation and relief).  相似文献   

17.
本研究利用美国国家海洋和大气管理局(NOAA)的Global Forecasting System(GFS)再分析资料、气象信息综合分析处理系统(MICAPS)观测资料、自动站与逐小时融合降水资料和中国新一代多普勒天气雷达网的基数据(Level-Ⅱ),对2014年5月31日一次发生在合肥附近的暖区飑线过程进行了分析。天气分析显示,飑线发生在暖区,整个中高层以下呈现高湿状态,以及较弱的对流不稳定和弱风切变(0~3 km风切小于10 m·s-1)环境。雷达分析揭示,飑线呈弓状,具有明显的对流区、层云区和过渡带,线尾涡旋位于弓形回波北端。从后往前的气流自层云区后侧6 km以下进入系统,最大风速区在z=4 km处,强风速中心并未及地造成地面风灾。由于本次个案在暖区高湿环境下形成,地面冷池较弱,维持时间短;短时降水较强,最强超过40 mm·h-1。  相似文献   

18.
During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 ...  相似文献   

19.
We investigated the flux footprints of receptors at different heights in the convective boundary layer (CBL). The footprints were derived using a forward Lagrangian stochastic (LS) method coupled with the turbulent fields from a large-eddy simulation model. Crosswind-integrated flux footprints shown as a function of upstream distances and sensor heights in the CBL were derived and compared using two LS particle simulation methods: an instantaneous area release and a crosswind linear continuous release. We found that for almost all sensor heights in the CBL, a major positive flux footprint zone was located close to the sensor upstream, while a weak negative footprint zone was located further upstream, with the transition band in non-dimensional upwind distances −X between approximately 1.5 and 2.0. Two-dimensional (2D) flux footprints for a point sensor were also simulated. For a sensor height of 0.158 z i, where z i is the CBL depth, we found that a major positive flux footprint zone followed a weak negative zone in the upstream direction. Two even weaker positive zones were also present on either side of the footprint axis, where the latter was rotated slightly from the geostrophic wind direction. Using CBL scaling, the 2D footprint result was normalized to show the source areas and was applied to real parameters obtained using aircraft-based measurements. With a mean wind speed in the CBL of U = 5.1 m s−1, convective velocity of w * = 1.37 m s−1, CBL depth of z i = 1,000 m, and flight track height of 159 m above the surface, the total flux footprint contribution zone was estimated to range from about 0.1 to 4.5 km upstream, in the case where the wind was perpendicular to the flight track. When the wind was parallel to the flight track, the total footprint contribution zone covered approximately 0.5 km on one side and 0.8 km on the other side of the flight track.  相似文献   

20.
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise (DBSCAN) algorithm. To identify convective and stratiform clouds in different developmental phases, two-dimensional (2D) and three-dimensional (3D) models are proposed by applying reflectivity factors at 0.5° and at 0.5°, 1.5°, and 2.4° elevation angles, respectively. According to the thresholds of the algorithm, which include echo intensity, the echo top height of 35 dBZ (ET), density threshold, and ε neighborhood, cloud clusters can be marked into four types: deep-convective cloud (DCC), shallow-convective cloud (SCC), hybrid convective-stratiform cloud (HCS), and stratiform cloud (SFC) types. Each cloud cluster type is further identified as a core area and boundary area, which can provide more abundant cloud structure information. The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing, Xuzhou, and Qingdao. The results show that cloud clusters can be intuitively identified as core and boundary points, which change in area continuously during the process of convective evolution, by the improved DBSCAN algorithm. Therefore, the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification. Because density thresholds are different and multiple elevations are utilized in the 3D model, the identified echo types and areas are dissimilar between the 2D and 3D models. The 3D model identifies larger convective and stratiform clouds than the 2D model. However, the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds. In addition, the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号