首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, an experimental salt weathering simulation and porous stone durability classification are proposed. There are many laboratory tests that quantify durability against salt crystallisation weathering action. These are usually based on the total immersion of samples into a saline solution, which is not representative of the salt weathering mechanism. An experimental test based on partial immersion is suggested. This is a comparable study of weight loss and degradation of visual appearance due to salt crystallisation using, on the one hand, a standard durability test (UNE), and, on the other, the proposed durability test. The weight loss and visual appearance in our test is comparable to the degradation of building stone. The differences between weight loss data in both tests depend on the petrophysical properties: porous media and degree of coherence.

From this testing, a new durability classification as a function of dry weight loss in the partial immersion test is proposed. Four divisions of different types of materials can be made in this classification, which quantifies salt weathering action mainly in environments and mild climatic conditions.  相似文献   


2.
This study aims to understand the effect of salt and frost crystallisation on the petrophysical and durability properties of representative types of travertine and carbonate tufas. Results demonstrate that the studied travertines and tufas exhibit a very high durability against salt and ice crystallisation cycles, compared to carbonates rocks with similar porosity values. The variation of the loss of mass, effective porosity, capillary absorption coefficient, ultrasonic wave velocity and attenuation, and compressive strength was scarce during weathering tests. The evolution of petrophysical properties was slightly more intense after 30 cycles of salt crystallisation than 100 cycles of freeze–thaw. Petrophysical and durability properties of the travertines and carbonate tufas depend on porosity fraction and on the manner in which the vuggy porosity is connected. In the travertine facies, vuggy macropores show little connection and can be considered as separate-vug porosity. Their addition to interparticle porosity increases effective porosity and reduces their mechanical strength but does not significantly increase capillary transport and the effectiveness of salt and ice action over the stone. On the contrary, in the carbonate tufas, vugs act as touching-vug pores, as capillary imbibition coefficients reveal. However, scanning electron microscopy displays that they underwent microcracking processes related mainly to both thermal stresses and/or ice and salt pressures. These microcracks present little connection, and they do not enhance noticeably the water flow or decrease the mechanical properties. These results are finally discussed in terms of a nonlinear decay pattern, which with long periods of apparent stability might be followed by rapid and catastrophic decay.  相似文献   

3.
Two of the most popular weathering tests used for dimension stone are EN 12371 freeze–thaw (FT) and EN 12370 Salt Crystallization (SC). These tests are used to assign a durability value to the rocks. Both tests are based on the cyclical growth of crystals in the porous system of the rock, which causes structural stress on the rock matrix that may affect its integrity. The weathering mechanism is the same in both tests although the rate of volume increase is higher for the salt crystals. Due to this similarity, the two tests provide complementary information. The EN (European Norms) recommend evaluating the results together, but do not establish correlations between the results of these two tests for different types of rocks. Knowing these relationships would improve the understanding of the results and the response to weathering of the rock once placed in a building. In this work, several ornamental rocks (sandstones, limestones, dolostones, and a travertine) from the Iberian Peninsula were submitted to FT and SC tests. Rocks were mineralogically and petrographically characterized, and their porous systems were defined by a combination of techniques (scanning electronic microscopy, digital images analysis, and mercury porosimetry). The results of the tests were quantified numerically to compare them. The velocity of propagation of ultrasonic waves was measured before and after the tests. After the statistical analysis, significant correlations were found between the FT and SC tests, and between the connected porosity and the durability index of the rocks.  相似文献   

4.
Weathering can cause adverse effects on the physico-mechanical properties of rocks. Although the processes and outcomes of weathering have been investigated for many rock types, the travertine weathering was not paid enough attention as much as the others. However, the unfavorable effects of weathering may arise rapidly due to travertine’s calcium carbonate composition and highly porous texture. Travertine is an important rock type in building stone market and is generally preferred as an exterior façade material. This rock type was also used in many historical buildings and sculptures in the past, and the signs of extensive weathering can be recognized on some of these travertine-made structures. In this study, it was aimed to characterize the effect of weathering on travertine’s structural properties. The yellow travertine from Eskipazar (Karabuk, Turkey) was selected as the study material and the samples with different weathering degrees were collected from site. The chemical, physical and mechanical properties of those samples were determined in laboratory. The physico-mechanical variations with progressive weathering grades were statistically evaluated and a weathering classification based on a rating system was proposed for yellow travertine in rock material scale. The newly developed system may assist in characterizing the degree of weathering for historical structures built by yellow travertine. Additionally, the classification may also guide to further researches on the weathering of different types of travertine.  相似文献   

5.
Slake durability of rocks is a vital engineering geological property of rock materials that has an important role in the promotion of slope stability, evaluation of rock materials, as well as the estimation of stone degradability. This parameter is related to such factors as mineralogy, physical characteristics of rocks, and the environmental conditions. A major part of south and southwestern Iran embraces the Aghajari Formation whose sandstones are used to form the foundations for some structures in Khouzestan province where they are being extensively used as aggregate(s). In this paper, tests of mineralogical examinations, physical properties, and slake durability of sandstones from Ahwaz and Haftkel anticlines were administered in order to assess the durability and degradability of these rocks. The rock durability of each type was evaluated to be up to 15 cycles in acidic and alkaline watery environments and salt aqueous solutions. The results showed that durability of sandstones under study is related to their petrographical and physical characteristics. The durability index of the sandstone samples was decreased by pH reduction and by increasing the concentration of aqueous solutions. The durability index of Ahwaz samples, too, was decreased in basic solutions while this index increased for Haftkel sandstones with the increase in the pH of solutions. Also, the obtained results illustrated that durability index decreased with the increase in the number of cycles. Based on the results, all sandstones show that the durability in sodium sulfate solution is much lower than that for the sodium chloride. Moreover, the slake durability index of the sandstones is decreased with an increase in the concentration of aqueous solutions. As a final statement, the Ahwaz sandstones show lower resistance to weathering processes than Haftkel sandstones; therefore, the use of rocks as building stones is not recommended here.  相似文献   

6.
The influence of pore structure, water transport properties and rock strength on salt weathering is evaluated by means of a thorough rock characterisation and a statistical analysis. The pore structure was described in terms of its porosity, pore size distribution (quantified by mean pore radius) and specific surface area, density and water transport was characterised by means of water permeability (saturated flow) and capillary imbibition (unsaturated flow); whilst the rock strength test was carried out using uniaxial compressive strength, compressional and shear wave velocities, dynamic elastic constants and waveform energy and attenuation were obtained from the digital analysis of the transmitted signal. A principal component analysis and a stepwise multiple regression model was carried out in order to examine the direct relationships between salt weathering and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical meaning. The first component is mostly linked to mechanical properties, porosity and density whereas the second component is associated with the water transport and pore structure. Salt weathering, quantified by the percentage of weight loss after salt crystallisation, was included in both principal components, showing its dependence on their petrophysical properties. The stepwise multiple regression analysis found that rock strength has a predominant statistical weight in the prediction of salt weathering, with a minor contribution of water transport and pore structure parameters.  相似文献   

7.
Salt and ice crystallisation in porous sandstones   总被引:1,自引:0,他引:1  
Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.  相似文献   

8.
Salt weathering in dual-porosity building dolostones   总被引:2,自引:0,他引:2  
The influence of rock fabric on physical weathering due to the salt crystallization of selected brecciated dolostones is discussed. These dual-porosity dolostones are representative of heterogeneous and anisotropic building rocks, and present highly complex and heterogeneous rock fabric features. The pore structure of the matrix and clasts is described in terms of porosity and pore size distribution, whereas the relative strength for each textural component is assessed using the Knoop hardness test. The whole characterisation process was carried out using the same samples as those used in the standard salt durability test (EN-12370), including connected porosity, the water saturation coefficient, fissure density, compressional wave velocity and waveform energy.

Results show the most important rock fabric elements to be considered are the matrix and clast properties and the nature of fissures. Firstly, a relatively weak matrix was the focus of major granular disintegration as it presents high porosity, low pore radius and reduced strength. Secondly, narrow micro-fissures appear to be important in the decay process due to the effectiveness of crystallization pressure generated by salt growth. On the contrary, macro-fissures do not contribute greatly to rock decay since they act as sinks to consume the high supersaturations caused by growth of large crystals. Additionally, an analysis of stress generated by crystallization was carried out based on the general situation of a lenticular crystal geometry. Finally, the relationships between whole petrophysical properties and durability were established using a principal component analysis. This analysis has clearly established that the durability of rocks affected by salt crystallization mechanisms diminishes in weaker and anisotropic rocks with high porosity and fissure density.  相似文献   


9.
Weathering and durability are the key factors of the rock in the suitability and usefulness of different construction materials, building materials and engineering structures. A single test never predicts the entire factor for suitability of rock stone and aggregate in different uses. Thus, variety of physical, mechanical and chemical tests and indices of rocks are widely used to estimate and evaluate the rocks for the suitability of the required purpose. In all the cases, knowledge of durability and weathering properties are the most important along with the strength of the rock. Micropetrographic index and rock durability indicators (dynamic and static) are the one of the best methods to evaluate the rock for weathering and durability. To estimate these indices, variety of tests are performed such as petrographic examination test, point load index, sulfate soundness test, water absorption test, modified aggregate impact value test and test for specific gravity. Slake durability index and impact strength index tests were also performed for correlation with static and dynamic rock durability indicators due to its application and usefulness in the durability and strength of the rock materials. Micropetrographic index was obtained by petrographic examination test and correlated with all the physical and mechanical properties used for find out the durability indicators. The present study is to express the usefulness of these three indices in the classification of weathering and durability classes and estimation of durability indices by slake durability index, impact strength index and micropetrographic index.  相似文献   

10.
Sandstone degradation: an experimental study of accelerated weathering   总被引:2,自引:0,他引:2  
The investigated rock material belongs to the group of upper cretaceous quader sandstones which are very important construction stones in Poland and Germany. The mineral composition of the rocks is relatively uniform??they are quartzose sandstones. The most important feature is their good workability and comparatively high weathering resistance. Still, regardless of the apparent resemblance, the observations carried on buildings and monuments show differences in weathering processes. The undertaken test was an attempt to verify the proposed before rock classification, performed on the basis of parameterization of porosimetric cumulative intrusion volume curves. The aim of the experiment was the evaluation of the sandstone petrography (including the structure, texture and porosity of the rock) influence on the weathering process. The modelling of accelerated weathering was conducted in Chamber for Ageing Acceleration, where some weather circumstances were simulated (insolation, rain and frost). As the result of the weathering experiment it could be stated that the dominant mechanism of the sandstones deterioration was granular disintegration and weight loss as a consequence of sample destruction. The most important factor influencing rock deterioration is rock texture, especially the character of grain contacts. The effective porosity is a requisite of potential for the stone to take in and hold water, and hence of resistance to weathering. In case of silica-cemented sandstones, the deciding criterion influencing weathering resistance is pore structure. In case of sandstones with clay cement, the most important is mineral composition of the rock.  相似文献   

11.
世界文化遗产地承德避暑山庄内有大量的砂岩文物。在长期风化作用下,很多砂岩文物发生了严重的风化病害,亟须保护。通过现场调查,发现避暑山庄砂岩文物的风化病害主要为开裂、剥落、粉化、生物寄生等。通过室内测试,得出了该砂岩的矿物学、岩石学性质和物理、力学性质。在此基础上,分析了该砂岩的风化机理,认为钙质胶结物的溶解、干湿交替和盐分结晶膨胀是造成该砂岩粉化、剥落风化的主要原因。相关研究为该砂岩文物的修复保护提供科学支撑。  相似文献   

12.
《Applied Geochemistry》1995,10(3):317-327
The consideration of the use of salt formations as possible radioactive waste disposal sites led us to attempt to determine the extent to which their brine content could influence the performance of the disposal system. Bedded rock salt from the Cardona, Zaragoza and Guendulain Fms., as well as diapiric rock salt from northern and southeastern Spain, have been selected and their water contents characterized by thermogravimetry. Free water content (intergranular water and water in fluid inclusions) in the studied formations ranges from 0.01 to 1.24% weight. In addition, the presence of hydrated minerals increases the amount of total water in the rock (up to 3.50%). Clear differences between the studied formations are observed in the total amount of water and in the form of water entrapment in rock salt. The results obtained have allowed the classification of the studied rock salt formations with respect to their free-brine content as water-poor (around 0.1% in average), intermediate water-rich (around 0.2%) and water-rich (higher than 0.3%). The petrographical features of the rock salt, such as mineralogical content and halitic textures, play an important role in its water content. Whilst brine in fluid inclusions is related to the halite texture, intergranular brine depends mainly on the content of clay and sulphate minerals.  相似文献   

13.
14.
Slake durability study of shaly rock and its predictions   总被引:2,自引:0,他引:2  
More than 35% of the earths crust is comprised of clay-bearing rocks, characterized by a wide variation in engineering properties and their resistance to short term weathering by wetting and drying phenomenon. The resistance to short-term weathering can be determined by slake durability index test. There are various methods to determine the slake durability indices of weak rock. The effect of acidity of water (slaking fluid) on slake durability index of shale in the laboratory is investigated. These methods are cumbersome and time consuming but they can provide valuable information on lithology, durability and weather ability of rock. Fuzzy set theory, Fuzzy logic and Artificial Neural Networks (ANN) techniques seem very well suited for typical complex geotechnical problems. In conjunction with statistics and conventional mathematical methods, a hybrid method can be developed that may prove a step forward in modeling geotechnical problems. During this investigation a model was developed and compared with two other models i.e., Neuro-fuzzy systems (combination of fuzzy and artificial neural network systems) and artificial neural network system, for the prediction of slake durability index of shaly rock to evaluate the performance of its prediction capability.  相似文献   

15.
鄂尔多斯盆地上古生界致密砂岩储集层普遍以低孔低渗为主要特征,但在低孔低渗的背景上发育相对优质储集层。应用偏光显微镜、恒速压汞等技术手段,从碎屑岩的粒度、碎屑组分、孔隙结构等分析入手,对比神木气田、榆林气田和苏里格气田3个大气田的储集层特点,并对致密砂岩中相对优质储集层的成因进行了分析。研究认为:高石英类矿物含量、适量的可溶性组分(包括长石、火山岩岩屑及凝灰质等)及残余少量粒间孔形成的酸性流体的渗流通道是形成相对优质储集层的必要条件;而较高含量的千枚岩屑、泥板岩等软组分,在上覆地层压力作用下被压实变形、充填孔隙,造成残余粒间孔全部丧失和酸性流体渗流通道的缺乏,因而形成低孔低渗的致密砂岩储集层。  相似文献   

16.
The rock paintings in cliff-foot caves of the Albarracin Cultural Park are known as some of the most important evidences of the Levantine prehistoric art of Spain (8000–3000 BP). The paintings are on sandstone (Buntsandstein facies) of Triasic age, which may develop intense weathering. The analysis of the variables controlling the weathering indicate that salt and wetting-drying weathering are responsible for granular disintegration and flaking, which lead to rock painting deterioration.  相似文献   

17.
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone façades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.  相似文献   

18.
Uniaxial compression tests were performed on different categories of weathering of three lithological units: Malanjkhand granite; Nagpur basalt; and Delhi quartzite, occurring in central and northern parts of India. The deformational behaviour is studied in terms of variation in tangent modulus (Et50) and initial modulus (Ei) due to weathering. The power relationship between uniaxial compressive strength (σc) and Et50 shows strong correspondence for weathering sequence of common rock types. This relationship has been established by regression analysis and significant correlation parameter (coefficient of determination, r2=0.87) for crystalline rocks. It is shown that there is a systematic decrease in stiffness ratio, that is, ratio of tangent modulus and uniaxial compressive strength with increased weathering state. Comparison of Et50 and Ei values has shown that Et50 decreases more gradually than Ei, and reduction is more drastic for Ei values with an increased degree of weathering in all the three rock types. The mode of failure has been found to be influenced by weathering extent in rocks. A brief account is given of the intrinsic characteristics of fresh and weathered rocks and mineralogical changes produced by weathering investigated quantitatively. Correlation drawn between the petrographical and mechanical indices has shown that mechanical properties are apparently dependent on the intrinsic characteristics of weathered rocks.  相似文献   

19.
This research identifies the changes which takes place in roofing slate due to natural exposure and tries to replicate these changes experimentally. Traditional methods of testing, used by the British and other national standards, concentrate on the properties of unweathered samples and give no information on the relative durability of the different slates. Instead of concentrating on the initial properties, this research focuses on changes in the properties in order to assess durability. The effects of natural weathering were assessed by comparing old, used slates with new slates from the same or a similar source. The new slates were then weathered experimentally by repeated cycles of wetting and drying, and the increase in water absorbency compared with that observed in naturally weathering. Mineralogical differences due to both natural and experimental weathering were also measured using X-ray diffraction analysis. It was found that the effects of experimental weathering, using repeated cycles of wetting and drying, are similar to those observed in natural weathering. These include increased water absorbency and loss of crystallinity of the principal minerals. The greatest changes are found in those slates which are the most vulnerable to weathering, making it possible to identify poor quality slates.  相似文献   

20.
风化是引起莫高窟围岩(砂砾岩)破坏的一种重要病害,严重影响莫高窟的长期保存。为研究莫高窟玉门组砂砾岩的风化特征,选取莫高窟南侧一处崖体为试验点,采用逐层剥离的方法,分别在距崖体侧表面0cm、3cm、5cm、8cm及10cm深度处进行现场声波测试、回弹测试并取样进行X-射线衍射试验和易溶盐试验。试验结果表明:莫高窟围岩在风化作用下强度降低,现场声波测试和回弹测试结果均随着开挖深度的增加而不断升高;砂砾岩胶结物的主要矿物为石英、方解石、长石、白云石、石膏等,主要黏土矿物是绿泥石;其可溶盐主要包括Na2SO4、NaCl、CaSO4等。同时结合气象数据及试验结果,分析了影响岩体风化的主要因素,初步讨论了岩体的风化机理,包括:(1)温度应力引起岩体结构破坏和裂隙发育;(2)胶结物中的主要矿物方解石易于发生水化作用,转化成易溶的Ca(HCO32,发生迁移,破坏岩体的胶结结构;(3)盐风化也是岩体风化的一个重要方式,Na2SO4、CaSO4等可溶盐在水汽作用下发生溶解、结晶及水合作用,体积膨胀,对孔隙壁产生较大压力,致使岩体颗粒之间联结减弱,结构破坏,裂隙发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号