首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海棠\     

“海棠”台风(2005)再次登陆福建省前后24 h期间(2005年7月19日00时—20日00时(世界时,下同)),给位于台风路径右侧的福建省东北部及浙江省境内(记为R区)造成大范围暴雨,同时,位于台风路径左侧福建省中南部及广东省境内(记为L区)仅有小雨发生,台风路径左右两侧暴雨落区呈明显非对称分布。基于WRF模式模拟结果诊断分析了“海棠”台风(2005)暴雨及其非对称分布特征成因,结果表明:(1)中尺度天气系统对“海棠”台风暴雨的垂直运动场的强迫作用是主要的,大尺度天气系统所起的强迫作用基本处于次要位置。地形抬升对“海棠”台风暴雨形成一直起着稳定、持续的促进作用,地表摩擦作用主要在台风登陆以后与“海棠”台风暴雨形成密切相关。(2) Q矢量强迫产生的降水场、地形强迫产生的降水场均呈左右非对称分布特征,气象因子是“海棠”台风降水非对称特征形成的主要因素,它一方面直接导致降水非对称特征形成,同时还引发地形因子强迫发挥了重要的促进作用。(3)进一步界定诊断范围对比分析表明,对于R区来讲,存在强烈的上升运动,并将低层汇聚的充沛水汽向上层输送,导致R区强降水发生,而对于L区来讲,上述与降水发生密切相关条件均较R区弱,不利于强降水发生。最后,对未来台风降水成因研究工作进行了初步展望。

  相似文献   

2.
The precipitation during landfall of typhoon Haitang (2005) showed asymmetric structures (left side/right side of the track). Analysis of Weather Research and Forecasting model simulation data showed that rainfall on the right side was more than 15 times stronger than on the left side. The causes were analyzed by focusing on comparing the water vapor flux, stability and upward motion between the two sides. The major results were as follows: (2) Relative humidity on both sides was over 80%, whereas the convergence of water vapor flux in the lower troposphere was about 10 times larger on the right side than on the left side. (5) Both sides featured conditional symmetric instability [MPV (moist potential vorticity) <0], but the right side was more unstable than the left side. (6) Strong (weak) upward motion occurred throughout the troposphere on the right (left) side. The Q vector diagnosis suggested that large-scale and mesoscale forcing accounted for the difference in vertical velocity. Orographic lift and surface friction forced the development of the asymmetric precipitation pattern. On the right side, strong upward motion from the forcing of different scale weather systems and topography caused a substantial release of unstable energy and the transportation of water vapor from the lower to the upper troposphere, which produced torrential rainfall. However, the above conditions on the left side were all much weaker, which led to weaker rainfall. This may have been the cause of the asymmetric distribution of rainfall during the landfall of typhoon Haitang.  相似文献   

3.
利用地面加密自动站观测资料以及NCEP再分析资料,对1211号“海葵”台风登陆后在江苏引发的两段降水对流特征差异明显的大暴雨天气进行对比分析。结果表明:第一段区域性大暴雨天气发生在台风环流中心及北侧偏东风急流附近,此时台风环流完整,中心维持正压结构,环流中心及其北侧偏东急流附近伴有较大范围的水汽辐合和强上升运动,有利于区域性大暴雨天气发生,但降水发生在近乎中性的层结下,降水分布较均匀,发展平缓,降水期间对流活动较弱;第二段大暴雨则发生在远离环流中心的台风倒槽顶部,降水期间暴雨区中高层伴有较明显的冷平流,有利于对流不稳定层结发展,降水发展过程中,地面风场出现中尺度扰动,增强了局地辐合和气旋性涡度,加之地面锋区发展,促进了中尺度对流系统的形成和发展,此段降水中尺度特征显著,发展迅速,雨强大,伴有明显的对流特征,导致出现局地特大暴雨天气。  相似文献   

4.
基于自动站观测和ECMWF再分析资料,针对中国气象局上海台风研究所区域高分辨率台风模式(Shanghai Tropical Cyclone High Resolution Analysis and Prediction System,STI-THRAPS)和业务常用的4个数值模式,即欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,EC)全球模式,美国全球预报系统(The Global Forecast System,GFS),日本气象厅(Japan Meteorological Agency,JMA)全球模式和我国T639(T639L60)全球模式,对1323号台风"菲特"登陆过程的预报性能进行了综合检验评估。结果显示:对暴雨以上的强降水预报STI-THRAPS有明显优势。仅有该模式对超过500 mm的极端降水做出预报,且各项评分均好于全球模式,漏报率也明显优于其他模式。对暴雨以下的降水预报各个模式差距不大。美国GFS和STI-THRAPS较好地预报了大风区,STI-THRAPS预报的风场与实况的空间相关程度最高。从漏报率上来看,STI-THRAPS模式的风场预报具有明显优势。虽然预报最大风速偏大,但是STI-THRAPS在24 h后的路径预报有较大优势。  相似文献   

5.
Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6--8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.  相似文献   

6.
When super typhoon Sepat came close to the Fujian coastline on the night of 18 August 2007 (coded as 0709 in Chinese convention), an associated tornado-like severe storm developed at 2307–2320 Beijing Standard Time in Longgang, Cangnan County, Wenzhou Prefecture, Zhejiang Province approximately 300 km away in the forward direction of the typhoon. The storm caused heavy losses in lives and property. Studying the background of the formation of the storm, this paper identifies some of its typical characteristics after analyzing its retrieval of Doppler radar data, vertical wind shear and so on. Synoptic conditions, such as unstable weather processes and TBB, are also studied.  相似文献   

7.
Sepat台风(0709)登陆过程中眼放大现象研究   总被引:4,自引:0,他引:4  
李英  钱传海  陈联寿 《气象学报》2009,67(5):799-810
台风登陆过程中常发生结构变化,从而引起其强度、路径以及风雨分布等一系列变化,导致登陆台风灾害十分复杂.0709号台风Sepat在穿过台湾岛时结构变化明显,出现了台风眼放大现象.基于上海台风研究所台风资料、FY-Ⅱ卫星半小时一次的遥感资料、台湾雷达逐时合成回波图像以及NCEP每日4次1°×1°格距的再分析资料,研究了Sepat登陆过程中的眼放大现象.结果表明:(1)Sepat登陆台湾后眼墙塌陷、眼消失,但随后在从台湾海峡移向大陆过程中重新出现了台风眼并伴有眼放大现象,眼直径扩展至约600 km;(2)这种眼放大现象,实际上是台风内核区对流云团分裂扩散过程中与外围螺旋云带一起重新发展出的环状结构.台风眼的扩大与眼区下垫面温度降低、低层大气不稳定度减弱、径向外流加强、下沉运动区范围扩大等因素有关;(3)在台风外围,环境干空气侵入台风环流并在其西部形成了弧状湿度锋.锋区既促进对流运动发展,也阻碍了台风眼区云团进一步向外扩散,使对流云团在锋区附近排列成半圆弧状云带,并在台风气旋性环流组织下与台风东部的螺旋云带一起形成了环状眼墙;(4)台风的减弱消亡与其眼区放大现象密切相关.台风眼放大过程中,由于眼内干空气下沉范围加大、对流凝结潜热加热减弱,不利于暖心结构维持,台风强度亦随之衰减.同时,其增强的径向外流在一定程度上阻止水汽能量向台风内核区输入,促使台风内核对流运动的减弱和消亡.  相似文献   

8.
9.
Ice clouds are an important component in precipitation systems. The radiative processes of ice clouds directly impact radiation in heat budget and the microphysical processes of ice clouds directly affect latent heat and net condensation through deposition processes, which may eventually change surface rainfall. Thus, torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006) are investigated with the analysis of sensitivity experiments. The two-dimensional cloud-resolving model is integrated for 3 days with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection from NCEP/GDAS data. One sensitivity experiment excludes the radiative effects of ice clouds and the other sensitivity experiment excludes ice microphysics and associated radiative and microphysical processes. Model domain mean surface rain rate is barely changed by the exclusion of radiative effects of ice clouds due to the small decrease in net condensation associated with the small reduction in latent heat as a result of the offset between the increase in radiative cooling and the decrease in heat divergence. The exclusion of microphysical effects of ice clouds decreases the mean rain rate simply through the suppression of latent heat as a result of the removal of deposition processes. The total exclusion of ice microphysics decreases the mean rain rate mainly through the exclusion of microphysical effects of ice clouds.  相似文献   

10.
Cloud microphysical and rainfall responses to radiative processes are examined through analysis of cloud-resolving model sensitivity experiments of Typhoon Fitow(2013) during landfall.The budget analysis shows that the increase in the mean rainfall caused by the exclusion of radiative effects of water clouds corresponds to the decrease in accretion of raindrops by cloud ice in the presence of radiative effects of ice clouds,but the rainfall is insensitive to radiative effects of water clouds in the absence of radiative effects of ice clouds.The increases in the mean rainfall resulting from the removal of radiative effects of ice clouds correspond to the enhanced net condensation.The increases(decreases) in maximum rainfall caused by the exclusion of radiative effects of water clouds in the presence(absence) of radiative effects of ice clouds,or the removal of radiative effects of ice clouds in the presence(absence) of radiative effects of water clouds,correspond mainly to the enhancements(reductions) in net condensation.The mean rain rate is a product of rain intensity and fractional rainfall coverage.The radiation-induced difference in the mean rain rate is related to the difference in rain intensity.The radiation-induced difference in the maximum rain rate is associated with the difference in the fractional coverage of maximum rainfall.  相似文献   

11.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

12.
13.
周泓  金少华  尤红 《气象科学》2012,32(3):339-346
利用地面加密观测、Micaps资料和NCEP1°×1°再分析资料对1003号"灿都"台风造成云南暴雨进行诊断分析。结果表明:台风低压为高温高湿且具有强对流不稳定的深厚系统。进入云南后除了自身携带的大量水汽和能量外,先后有副热带高压西侧强盛偏南急流和孟加拉湾西南气流卷入,使得台风低压在云南持久不衰,并产生全省性强降水。诊断量"水汽螺旋度"对暴雨落区和强度有较好的对应关系,强降水多发生在水汽螺旋度正值中心的偏南侧。"水汽螺旋度"随时间变化的两个影响因子"螺旋度通量散度"和"湿螺旋度散度"对强降水的落区和强度也有较好的指示作用。若是分别对两个因子进行诊断,再综合分析环流形势,将能达到更好的强降水预报效果。  相似文献   

14.
陆面参数的扰动对一次西北暴雨模拟影响的研究   总被引:7,自引:3,他引:7  
曾新民  张强 《气象科学》2009,29(3):291-298
利用中尺度模式WRFV2.2及NCEPFNL资料,模拟了2007年6月16—17日的兰州暴雨,检验此次暴雨模拟对NOAH陆面模式参数初始扰动的敏感性。结果表明,此次模拟暴雨对陆面参数的扰动(如土壤孔隙度以及地表反照率的扰动)比较敏感;陆面参数扰动对此次暴雨模拟影响的最小时间尺度小于10h;陆面参数的扰动直接引起地表通量的变化,更为重要的是通过改变水汽输送的环流形势,从而对暴雨模拟产生较大的影响。  相似文献   

15.
"0604"台风暴雨的数值模拟与诊断研究   总被引:3,自引:7,他引:3  
采用非静力MM5( 3.5)中尺度数值模式对2006年7月14-15日湘南-粤北0604(BILIS)台风暴雨天气过程进行了数值模拟与诊断分析,结果发现暴雨区始终位于不稳定能量高值区域,并存在对流不稳定及条件性对称不稳定两种机制.强降雨中心附近非地转湿Q*散度是正、负相间分布,暴雨中心在低层对应非地转湿Q*散度负值中心,在高层对应正值中心,并位于次级环流低层上升支一侧.次级环主要是由风的水平切变和垂直切变差异效应造成的,其次是非绝热加热作用,且与暴雨的发展相一致.  相似文献   

16.
Numerical simulation of a South China Sea typhoon Leo (1999)   总被引:6,自引:0,他引:6  
Summary ?A South China Sea typhoon, Leo (1999), was simulated using the Penn State/NCAR mesoscale model MM5 with the Betts-Miller convective parameterization scheme (BMEX). The simulation had two nested domains with resolutions at 54 and 18 km, and the forecast duration was 36 hours. The model was quite successful in predicting the track, the rapid deepening, the central pressure, and the maximum wind speed of typhoon Leo as verified with reports from the Hong Kong Observatory (HKO). The structure of the eye, the eye wall, and the spiral convective cloud band simulated in the model are found to be comparable to corresponding features identified in satellite images for the storm, and also with those reported by other authors. A trajectory analysis was performed. Three kinds of trajectory were found: (1) spirally rising trajectories near the eye wall; (2) spirally rising/descending trajectories in the convective/cloud free belt; (3) straight and fast rising trajectories in a heavy convection zone along one of the cloud bands on the periphery of the tropical cyclone. Both the HKO and the U.S. Joint Typhoon Warning Center (JTWC) reported the rapid deepening of Leo started around 00 UTC 29 April. In the model, the eye was first formed in the lower troposphere, and it extended to the upper troposphere within a few hours. We speculate that the spin-up of cyclonic rotation in the low-level eye enhanced the positive vorticity along the low-level eye wall. The positive vorticity was then transported to the upper troposphere by convection, leading to an extension and growth of the eye into the upper troposphere. To examine the impact of convective parameterization scheme (CPS) on the simulation, the Grell scheme (GLEX) was also tested. The GLEX predicted a weaker typhoon with a wilder eye that extended not as high up in the upper troposphere as BMEX. The different structures of the eye between the BMEX and GLEX suggest that the mesoscale features of the eye are dependent on the convection. In other words, the vertical and horizontal distribution of convective heating is essential to the development and structure of the eye. Received December 18, 2001; accepted May 7, 2002 Published online: March 20, 2003  相似文献   

17.
通过对暴雨(A1)、大暴雨(A2)及特大暴雨(A3)区中潜热(大尺度潜热加热和对流潜热加热)、改进的湿Q矢量(Q*)以及地形因子(地形抬升和地表摩擦)作用的计算及对比分析,定量探讨了"海棠"台风(2005)雨强差异成因。结果表明,潜热加热在整个台风登陆过程中,基本都有助于A2与A1之间雨强差异形成,且在台风登陆后约1/3时段内对A1、A2及A3之间雨强差异形成有明显贡献。对于Q*矢量强迫作用,台风登陆前,仅有助于A2与A1之间雨强差异形成,在台风登陆后,则对A1、A2及A3之间雨强差异形成贡献明显。地形因子作用在台风登陆前,仅有助于A3与A1、A2之间雨强形成差异,但在台风登陆后,则有利于A1、A2及A3之间雨强差异形成。  相似文献   

18.
两次暴雨过程模拟对陆面参数化方案的敏感性研究   总被引:1,自引:0,他引:1  
陈海山  倪悦  苏源 《气象学报》2014,72(1):79-99
选取发生在江西和福建境内的两次暴雨个例,利用NCEP再分析资料在对暴雨发生前、后的环境场和物理量场进行诊断和对比分析的基础上,采用中尺度模式WRF V3.3,通过数值模拟探讨了陆面过程对两次暴雨过程的可能影响及其相关的物理过程。结果表明,2012年5月12日江西大暴雨主要受大尺度环流和中尺度天气系统影响,具有范围大、持续时间长等特点,属于大尺度降水为主的暴雨;而2011年8月23日福建暴雨发生在副热带高压控制下的午后,局地下垫面强烈的感热和潜热通量使低层大气不稳定性增强,触发了此次对流性降水为主的暴雨。通过资料诊断分析,可以判断陆面过程对福建暴雨个例的影响程度明显强于江西暴雨个例。通过关闭地表通量试验发现,陆面过程对暴雨模拟十分重要,尤其是对于该个例中对流性降水的发生起到关键性的作用。通过陆面参数化方案的敏感性试验发现,两次暴雨过程对陆面参数化方案均较为敏感。江西暴雨对陆面过程的敏感性主要体现在对流降水的模拟上,而福建暴雨则体现在大尺度降水的模拟方面,即福建暴雨对陆面参数化方案的敏感性强于江西暴雨。敏感性产生机制与降水类型关系紧密,大尺度降水对陆面过程的敏感性主要来源于不同参数化模拟的中高空对流系统的差异,而对流降水的敏感性则与不同参数化模拟的地表通量的差异有关。通过陆面参数的扰动试验进一步发现,相比于地表粗糙度和最小叶孔阻抗,土壤孔隙度和地表反照率则是影响对流降水对陆面过程敏感的关键因子,这在本质上与地表通量是否受到扰动有关。地表通量较风场而言,受扰动引起变化的空间范围广、时间响应快,变化具有明显规律性。所得结果可为深入理解陆面过程影响暴雨等天气过程和改进数值模式对暴雨的模拟能力提供一定的参考。  相似文献   

19.
利用常规观测资料和NCEP/NCAR FNL资料对“狮子山”(1006)和“天兔”(1319)两个台风造成山东半岛秋季远距离大暴雨的特征进行了诊断分析。结果表明:1)造成两次大暴雨的天气形势和物理量特征有相似,也有差异。2)两个台风的生成源地、移动路径以及强度差别均很大,大暴雨发生在台风登陆后从广东移到广西的过程中,高空北支冷槽、台风倒槽和850 hPa切变线是造成山东半岛大暴雨的主要天气系统。3)台风东侧和副热带高压之间850 hPa偏强东南气流将东海、黄海的水汽源源不断输送到山东半岛并在此辐合;低层辐合、高层辐散和垂直上升运动均利于大暴雨的发生;大暴雨发生前大气处于不稳定大气层结;台风和中纬度系统相互作用形成两层或三层锋区的斜压性特殊结构及高空急流的增强是山东半岛秋季台风远距离大暴雨的重要特征。4)两次大暴雨过程中低空急流特征、锋区斜压性结构特征、不稳定大气层结特征存在较大差异。  相似文献   

20.
The location and occurrence time of convective rainfalls have attracted great public concern as they can lead to terrible disasters. However, the simulation results of convective rainfalls in the Pearl River Delta region often show significant discrepancies from the observations. One of the major causes lies in the inaccurate geographic distribution of land surface properties used in the model simulation of the heavy precipitation. In this study, we replaced the default soil and vegetation datasets of Weather Research and Forecasting (WRF) model with two refined datasets, i.e. the GlobCover 2009 (GLC2009) land cover map and the Harmonized World Soil Database (HWSD) soil texture, to investigate the impact of vegetation and soil on the rainfall patterns. The result showed that the simulation patterns of convective rainfalls obtained from the coupled refined datasets are more consistent with the observations than those obtained from the default ones. By using the coupled refined land surface datasets, the overlap ratio of high precipitation districts reached 36.3% with a variance of 28.5 km from the observed maximum rainfall position, while those of the default United States Geological Survey (USGS) dataset and Moderate Resolution Imaging Spectroradiometer (MODIS) dataset are 17.0%/32.8 km and 24.9%/49.0 km, respectively. The simulated total rainfall amount and occurrence time using the coupled refined datasets are the closest to the observed peak values. In addition, the HWSD soil data has improved the accuracy of the simulated precipitation amount, and the GLC2009 land cover data also did better in catching the early peak time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号