共查询到20条相似文献,搜索用时 0 毫秒
1.
风廓线雷达中风切变分析方法的初步研究 总被引:2,自引:1,他引:2
在风廓线雷达连续输出的风场时间高度显示图上,尝试进行风场的流线分析和风切变值等值线分析,以便用于识别强烈风切变区。在风场变化比较均匀时,分析出的线形分布比较平缓,而在风场变化比较剧烈的区域,风向等值线、垂直风切变等值线和流线三者一致表现出了汇聚特点,线形的分布也异常地密集,分析结果直观地反映出了风场分布的特征和危险性风切变区域,该结果有助于风切变自动识别方法的研究。 相似文献
2.
利用飞机、雷达、卫星观测资料,对2014年5月1日08时—2日08时河北省一次降水性层状云结构特征进行综合观测分析。结果表明本次过程降水云大致分为3层:4 200~2 850 m为冷暖云结构,2 162~2 174 m为十几米厚的纯暖云,近地面层121~265 m有粒子浓度较低(量级为101cm-3)的暖云。降水开始前存在较明显的催化云—供给云结构,降水开始后高层对低层有催化作用。人工增雨潜力区主要位于3 100~4 000 m,对应的雷达回波强度为20~30 d Bz,且雷达回波强度垂直梯度明显变小。对不同高度的云微物理量进行相关性分析,结果表明,云底的液态水含量和云滴浓度与气溶胶浓度具有较强的负相关,过冷水含量与云滴浓度相关性达到0.434,云凝结核浓度在冷云中与温度相关性较强,相关系数达到0.717。 相似文献
3.
4.
时间分辨率是风廓线雷达的一个重要指标。根据风廓线雷达工作原理和时间分辨率计算方法,提出一种利用波束轮转技术来提高风廓线雷达时间分辨率的新方法。风廓线雷达使用该方法进行探测时,采用波束优先顺序进行观测,当雷达完成一次完整的观测后,每完成一个波束的观测,将该波束的观测数据替代之前观测数据中该波束的数据,其它波束使用之前的观测数据,组合成一个新的数据后,再进行后续处理。2018年10月1—31日利用L波段风廓线雷达开展了相关观测试验,并将根据两种模式所得结果与探空数据结果进行对比。试验结果表明,使用波束轮转技术可以将风廓线雷达的时间分辨率由6 min提升至1 min,在反演得到的风廓线结果上能够看到明显的变化过程;从与探空数据的对比结果看,使用波束轮转技术得到的大气风场实际情况更加吻合。 相似文献
5.
大兴安岭火区上空云和降水微物理结构特征个例研究 总被引:4,自引:1,他引:4
1987年5月24日云物理专业考查飞机对大兴安岭火区上空的云进行了水平观测。对此次观测结果的分析与研究表明:(1)来自空间状及空间技状区域的冰粒子(25—800μm)及降水粒子(200—6400μm)平均浓度较高;而来自枝状及枝星状区域的冰和降水粒子其平均浓度较低。(2)依据不同降水粒子形态所计算出的降雪强度以空间枝状为最大。 相似文献
6.
联合应用5部风廓线雷达、多普勒天气雷达组网观测资料,并结合海河流域自动气象站资料详细分析了2012年7月21日海河流域强降水发生、发展过程中温度场、风场演变特征。结果表明:这次强降水天气具有明显的中尺度天气特征,强降水主要发生在露点温度梯度区内。低空急流指数变化对短时强降水的峰值有一定的指示作用,它的快速增加意味着强降水将要开始。垂直风切变对短时强降水的形成具有参考价值:降水开始前,2 500-3 000 m的风速和风切变首先开始增大,之后大风向1 000 m以下扩散,风切变梯度增强预示着短时强降水开始;1 000-1 500 m风速迅速减小,高层也随之减小,强降水趋于减弱或结束。风廓线雷达中风向风速的变化能够指示系统的过境时间, 以上结论对预报强降水的起始及降水的持续时间具有使用价值。
相似文献7.
Analysis of the Microphysical Structure of Heavy Fog Using a Droplet Spectrometer: A Case Study 总被引:15,自引:0,他引:15
The microphysical properties of a long-lasting heavy fog event are examined based on the results from a comprehensive field campaign conducted during the winter of 2006 at Pancheng (32.2°N, 118.7°E), Jiangsu Province, China. It is demonstrated that the key microphysical properties (liquid water content, fog droplet concentration, mean radius and standard deviation) exhibited positive correlations with one another in general, and that the 5-min-average maximum value of fog liquid water content was sometimes ... 相似文献
8.
利用2010年1-2月深圳LAP3000型风廓线雷达资料,对湍流耗散率进行了估算,针对典型晴天条件下的湍流耗散率ε、折射率结构常数C2n、水平风速和风切变,分析了其时空变化特征.得出如下结论:(1)深圳地区低空大气ε的量级在10-7 ~10-1 m2 ·s-3之间,与理论模拟值基本一致;(2)时间分布特征表现为,2 km以下ε有很明显的日变化特征,夜晚和上午ε较大,下午及傍晚减小;(3)空间分布特征表现为,ε随高度大致呈递减分布;ε量级达10-2.5 m2 ·s-3所在高度可作为深圳地区2010年1月14-15日边界层顶高度的判断依据. 相似文献
9.
2016/2017冬季在天津开展了平流雾微物理特征观测试验,结合距地66 m高度处雾滴谱和255 m气象塔大气边界层资料,借助突变和趋势一致性非参数检验方法对重度霾后接连发生的两次平流雾过程发展阶段进行客观划分,揭示雾体内部一定高度处雾滴微物理特征和尺度分布特征的观测事实,讨论其生消演变规律。结果表明,伴随西南暖湿平流,饱和层首先在空中出现并向地面扩展,雾过程中成熟阶段观测高度范围内升温,雾层处于中性或弱不稳定层结状态。66 m高度处大雾滴持续存在,微物理特征与地面能见度准同步变化,数浓度高值出现在成熟阶段初期,而含水量、特征直径高值出现在成熟阶段后期,对应成熟阶段后期雾滴数浓度减少、地面能见度小幅跃升。消散阶段各尺度数浓度因雾滴蒸发同步减小。 相似文献
10.
利用FNL全球再分析资料(Final Operational Global Analysis)、探空资料对2019年6—9月位于中国华北地区20个站点共5种型号(CFL-06、GLC-24、TWP8-L、CFL-03、CLC-11-D)的边界层风廓线雷达资料进行了质量评估。结果表明:各型号雷达均具有较强的探测能力,但不同雷达在水平风资料数据获取率以及有效探测高度上差异极大。不区分天气状况时,所有型号雷达均为V风质量优于U风质量。TWP8-L雷达U风测风质量相对最佳,CFL-03雷达紧随其后,GLC-24雷达U风测风质量最差,V风质量则差异不大,U风数据使用前需进行偏差订正以及质量控制。风廓线雷达观测对于降水较为敏感,降水使各型号雷达数据获取率在底层减小,中高层增加,增幅最大达到53%,但探测能力加强并不代表测风质量增加,统计结果表明降水是造成U风平均误差以及均方根误差较高的重要原因,其中,GLC-24、CLC-11-D雷达对降水最为敏感,降水状态相较于非降水状态均方根误差增幅均达到了5.5 m/s以上,降水情况下的U风及V风资料需进行进一步质量控制才可使用。 相似文献
11.
随着风廓线雷达技术的发展,高空风探测参量越来越多,数据精度不断提高,探测能力得到了极大提升。评估风廓线雷达数据置信度是风廓线雷达应用中需要解决的重要问题。本文基于径向数据和风场合成两个阶段,在风廓线雷达数据反演过程中形成数据置信度算法,并引入噪声电平。同时,利用南京同站址风廓线雷达和探空1 a的资料进行匹配比对,对置信度算法性能进行评估,结果表明该置信度算法可行。将置信度算法植入风廓线雷达数据处理软件中,能实时输出含置信度的风廓线雷达产品数据,有利于预报人员合理使用置信度较高的风廓线雷达产品数据。对于置信度较差的产品数据进行分析,可有助于及时发现雷达的潜在故障。 相似文献
12.
利用一架搭载云和降水粒子探头的国王350飞机对2020年1月5日邢台皇寺上空降雪云系的微物理特征进行探测和分析。结果表明:飞机探测时段处于系统发展初期阶段,同一位置垂直上升阶段和垂直下降阶段云微物理特征差距较大;云体结构不均匀,表现为云粒子在垂直高度上呈多层分布,中间有夹层。4 300~3 100 m高度层的过冷水含量最丰富,峰值达0.3 g/m3,对应温度约-9℃。过冷水丰富区出现在逆温层上方,该层最适合开展碘化银增雪作业。 相似文献
13.
应用MM5中尺度模式,选用4种不同云微物理方案(Dudhia简单冰相方案、Reisner混合相方案、Reisner2霰方案和Schultz微物理方案),对2002年7月12-13日祁连山区降水过程进行了数值模拟试验。模拟结果的对比分析表明,不同云微物理方案在祁连山区降水的模拟中对降水落区的模拟均偏南;除Reisner2霰方案外,其他3种方案对降水中心落点的模拟影响不大,降水中心强度对云微物理方案不敏感;显式降水和参数化降水对云微物理方案有不同程度的依赖性;云微物理过程通过影响动力条件发生发展的时间和强度,来影响强降水发生的时间和强度。通过各云微物理参数的分析发现,各物理过程中微物理参数参与降水的过程不同:对Dudhia简单冰相方案来说,雨水和云水是形成降水的主要过程;Reisner混合相方案中降水的形成主要是由于雨水、云水、雪和霰的碰并过程,冰晶的碰并相对较弱;在Reisner2霰方案中,雨水、云水、冰晶、雪和霰均参与碰并碰冻过程;Schultz微物理方案中冰晶、雪和霰的碰并过程更为重要。 相似文献
14.
2014年夏季青藏高原云和降水微物理特征的数值模拟研究 总被引:2,自引:0,他引:2
为了加强对青藏高原(高原)云和降水微物理特征的深入认识,采用高分辨率中尺度数值预报模式(WRF),对第三次青藏高原大气科学试验2014年7月3-25日发生的6次不同强度云和降水过程进行了数值模拟分析。研究结果表明:(1)青藏高原夏季云和降水过程具有独特性。高原夏季对流的促发机制主要是午后高原加热造成的,云和降水具有明显的日变化。午夜后,对流性降水一般转化为层状云降水,具有明显的0℃层回波亮带,并且会产生强降水。大部分对流云云顶高度超过15 km(海拔高度),最大上升气流速度为10-40 m/s。(2)6次云过程中均具有高过冷云水含量,主要分布在0—-20℃层,冰晶含量主要分布在-20℃层以上的区域,强盛的对流云中,可出现在-40℃层以上区域;雨水集中分布在融化层之下,说明其主要依赖降水性冰粒子的融化过程;雪和霰粒子含量高,分布范围广,说明云中冰相过程非常活跃。(3)高原夏季云中水凝物的转化过程和降水的形成机理具有明显特点。霰粒子的融化过程是地面雨水的主要来源,暖雨过程对降水的直接贡献很小,但通过暖雨过程形成的过冷雨滴的异质冻结过程对云中霰胚的形成十分重要。霰粒子的增长主要依靠凇附过程以及聚并雪晶的增长过程。 相似文献
15.
针对实际工程中风廓线雷达风向、风速随高度分布取值的非线性特性以及非气象干扰因素,基于非线性化方法——扩展卡尔曼滤波法,对风廓线雷达探测数据进行滤波处理.先利用泰勒展开式的一次项对非线性方程作线性化处理,再结合经典的卡尔曼滤波进行滤波估计,将非线性滤波问题转化为一个近似的线性滤波问题.仿真实验结果表明,该方法可以有效去除风场数据中掺杂的噪声干扰,很好地发挥了其非线性特性,滤波效果优于传统的卡尔曼滤波,具有一定的工程应用前景. 相似文献
16.
Summary Two-thirds of the land mass of Taiwan island is covered by mountains that affect precipitation systems over the island. To understand the influence of such terrain on a precipitation system was one of the objectives of TAMEX (Taiwan Area Mesoscale Experiment, Kuo and Chen, 1990). During the passage of these precipitation systems, Doppler radar readings as well as conventional data were collected. On 17 June, 1987 a precipitation system moving toward northeastern Taiwan dumped over 100 mm of rainfall per day near the mountain foothills, not far from the ocean. Over the lee side, the precipitation amount was less. The radar data results indicate that a series of cells formed about 10 km upstream of the coastal area and moved toward the mountains under the influence of an easterly wind. The zonal speed was about 4 to 8 ms–1. The time interval for the formation of these convective cells was about 40 minutes. They intensified near the coastal area, the foot hills and the mountain slope, but their intensity decreased on the lee-side. A two-dimensional, nonhydrostatic model with a terrain-following coordinate system was employed to study the influence of environmental wind patterns and terrain on the characteristics of a precipitation system. Simulation results indicate that a series of clouds associated with an updraft formed at the middle level, about 10 to 20 km east of the mountain foothills (near the coast line), under the influence of easterly winds in a very moist environment. Then, updrafts associated with cloud water travelled westward from the cloudy region, intensifying near the bottom of the mountains and in the coastal areas due to orographic lifting. Then, convective cells formed. As these cells continued moving westward and upward near the foothills as well as the upslope area near the mountain top, their intensity increased. But once they passed over the mountain top to the lee side, their intensity decreased. The time interval for the formation of cells was about 35 minutes and the size of the cells was about 5 to 8 km horizontally. The numerical results are qualitatively consistent with the observations. Sensitivity studies indicate that the magnitude of the wind speed influenced the formation of the cells. The low level wind profiles affected the movement of cells on the lee-side of the mountain, and the height of mountain also had an impact on the characteristics of the precipitation cells.With 18 Figures 相似文献
17.
晴空热对流泡的风廓线雷达探测研究 总被引:1,自引:1,他引:1
文中将风廓线雷达和无线电-声探测系统探测资料用于边界层晴空热对流探测研究.结合探测事例分析了晴空热对流的演变过程和热对流对上层空气的加热效应.在热对流初期,对流高度逐渐抬高,伴有较强上升速度的热对流泡逐渐升高的现象.在热对流旺盛期,热泡合并现象明显,不论是上升还是下沉气流瞬时速度都可以超过1 m/s,可以在约2 km的高度范围内形成一致的上升或下沉运动,并形成闭合环流、周期约1 h.在热对流消退期,对流高度逐渐降低,上升运动变得相对和缓并维持较长时间.在热对流过程中,热泡运动造成气层温度的起伏,热泡与周围温度差可以达到2-4℃.探测结果表明风廓线雷达具有很高的灵敏度,可以探测到晴空热对流泡.并且,风廓线雷达资料具有很高的时间和高度分辨率,可以精细刻画热对流泡的时空分布和演变,配合无线电-声探测系统还可以精确探测热泡温度分布及其对周围温度垂直分布的影响.通过对晴空热对流风廓线雷达探测资料的初步分析,在一定程度上拓展和加深了对热对流泡和边界层热对流运动特征的了解.借助风廓线雷达探测可有效改善低层大气探测,有利于开展低层大气动力与热力过程的数值研究,对于中尺度模式、降水预报的改进等具有重要参考作用. 相似文献
18.
使用浙江探空数据对EC再分析数据评估发现两者风场存在较好的相关性,可用EC再分析数据取代探空数据对风廓线数据进行评估。评估结果显示当无降水时,风廓线雷达数据与EC再分析数据相关系数在0.85~0.9之间;当有降水时,两类数据相关系数在0.7~0.8之间。统计结果还显示,无降水时风廓线雷达数据在中层2~4 km与EC再分析数据相对误差较小,在低层和高层由于相关资料的缺测造成相对误差较大。有降水时风廓线雷达数据与EC再分析数据相对误差随高度变化特征不明显。通过对台风个例的风力演变特征分析发现,雷达资料的时空完整性都比较好,相对探空数据可以观察到系统演变过程中更精细的风力结构。 相似文献
19.
Aircraft observation of cloud microphysical characteristics of pre-stratiform-cloud precipitation in Jiangxi Province 下载免费PDF全文
《大气和海洋科学快报》2017,(5)
本文利用2015年11月11日江西省赣州市一次降水前期层状云的DMT资料,结合雷达数据,综合分析了在高空槽影响下云系的宏微观结构特征。结果表明:(1)探测属于降水前期,云系呈多层分布。(2)层状云系在水平和垂直方向存在不均匀性,0°C层上下满足播种云-供应云机制。0°C层以上为播种云,凝华,粘连增长占主要过程。0°C层以下的暖层为供应云,粒子在液态水含量丰富的供应云体中长大,冰晶的融化聚并过程使得有效直径显著增大。下降到4150m的高度,冰晶完全融化变为雨滴。 相似文献
20.
庐山云雾观测站2015年重新开始观测试验。利用2015年11月—2018年2月庐山云雾试验站观测的云物理资料和九江站的雷达资料,统计研究了庐山云雾及降水的日、季节变化和宏微观物理特征。结果表明,庐山强降水多发生在夏季,降水强度超过100 mm/h,而云雾天多发生在秋冬春季,最高云和雾天数达25 d/月,最低能见度仅20 m,东北风有利于水汽的冷却凝结。云雾辐射影响下的日最低温度出现在09时前后,即云雾消散前。利用雷达资料对降水分类,庐山秋冬季层状云、积层混合云和对流云降水分别占29%、44%和27%,春夏季的对流云和积层混合云降水分别占83%和17%。与城市降水和雾相比,庐山降水的中、小雨滴多,云雾滴谱的数浓度较低,双峰结构显著,且谱较宽。随着云内降水量级的增大,雨滴的数浓度和尺度不断增加,更易于启动碰并机制,使小于11 μm和大于30 μm云雾滴减少,导致11 μm的峰值更为显著。降雪期间的小云雾滴较为丰富,固态降水更容易通过凇附过程消耗大的过冷云滴。 相似文献