首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A case study was carried out with the aim to practically test whether estimates of groundwater discharge rates into dredging lakes can be made via an uncomplicated and straightforward technique using radon-222 as naturally-occurring groundwater tracer. Lake Ammelshainer See, a dredging, seepage lake, approximately 25 km east of Leipzig, Germany, was chosen as the investigation site. In order to evaluate changes in the spatial and temporal radon-222 patterns in the lake during different stages of stratification, sampling campaigns were conducted in April 2007 (well mixed stage) and in May 2007 (thermal stratification stage). Groundwater flow estimates were made using a radon mass balance approach accounting for all radon fluxes into and out of the lake and assuming steady-state conditions with respect to these radon fluxes. Once all positive and negative radon fluxes related to the lake water volume were determined, groundwater discharge was estimated by using the advective radon input and the radon activity concentration of the pore water as key parameters. The results showed that in case of a lake with a size and shape of Lake Ammelshainer See (530,000 m2) reasonable groundwater discharge estimates can be made by collection and analyzing just a few water samples and a few samples from the sediment layer.  相似文献   

2.
Radon has been used to determine groundwater velocity and groundwater discharge into wetlands at the southern downstream boundary of the Crau aquifer, southeastern France. This aquifer constitutes an important high-quality freshwater resource exploited for agriculture, industry and human consumption. An increase in salinity occurs close to the sea, highlighting the need to investigate the water balance and groundwater behavior. Darcy velocity was estimated using radon activities in well waters according to the Hamada “single-well method” (involving comparison with radon in groundwater in the aquifer itself). Measurements done at three depths (7, 15 and 21 m) provided velocity ranging from a few mm/day to more than 20 cm/day, with highest velocities observed at the 15-m depth. Resulting hydraulic conductivities agree with the known geology. Waters showing high radon activity and high salinity were found near the presumed shoreline at 3,000 years BP, highlighting the presence of ancient saltwater. Radon activity has also been measured in canals, rivers and ponds, to trace groundwater discharges and evaluate water balance. A model of the radon spatial evolution explains the observed radon activities. Groundwater discharge to surface water is low in pond waters (4 % of total inputs) but significant in canals (55 l/m2/day).  相似文献   

3.
A hydrogeochemical approach has been carried out in the Mio-Plio-Quaternary aquifer system of northern Sfax to investigate the geochemical evolution, the origin of groundwaters and their circulation patterns. The groundwater samples collected from different wells seem to be dominated by sodium chloride type to sulphate chloride type. Detail analysis of chemical data including the thermodynamic calculations was used to assess that the chemical evolution of groundwater is primarily controlled by water–rock interactions. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US Salinity Laboratory diagram for irrigation water. Most of the water samples in northern Sfax fall in the fields of C4S1, C4S2 and C4S3 indicating very high salinity and medium to high sodium alkalinity hazard. Thus, groundwater quality is ranging between doubtful to unsuitable for irrigation uses under normal condition, and further action for salinity control is required in remediating such problem. Principal component analysis of geochemical data used in conjunction with bivariate diagrams of major elements indicates that groundwater mineralization is mainly controlled by (1) water–rock interaction processes, (2) anthropogenic process in relation with return flow of NO3-rich irrigation waters and (3) domestic discharges.  相似文献   

4.
Stable isotopes (??2H, ??18O and ??13C) and radiocarbon (14C) have been used in conjunction with chemical data to evaluate recharge mechanisms and groundwater residence time, and to identify inter-aquifer mixing in the Djeffara multi-aquifer in semi-arid southeastern Tunisia. The southern part of this basin, the Djeffara of Medenine aquifer system, is comprised of two main aquifers of Triassic and Miocene sandstone. The Triassic aquifer presents two compartments; the first one (west of the Medenine fault system) is unconfined with a well-defined isotope fingerprint; the second compartment is deeper and confined. Multi-tracer results show groundwater of different origins, ages and salinities, and that tectonic features control groundwater flows. Fresh and brackish groundwater from the unconfined part of the Triassic aquifer was mostly recharged during the Holocene. The recharge rates of this aquifer, inferred by 14C ages, are variable and could reach 3.5?mm/year. Brackish water of the deep confined part of the Triassic aquifer has stable isotope composition and 14C content that indicates earlier recharge during late Pleistocene cold periods. Brackish to saline water of the Miocene aquifer presents variable isotope composition. Groundwater flowing through the Medenine fault system is mainly feeding the Miocene aquifer rather than the deep confined part of the Triassic aquifer.  相似文献   

5.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in rural areas. In Tunisia, since the quantity and the quality of water available for different uses is variable from one place to another, groundwater quality in El Khairat deep aquifer was evaluated for its suitability for drinking purposes. To this end, an attempt has been made for the first time in order to determine spatial distribution of groundwater quality parameters and to identify places with the best quality for drinking within the study area based on: (1) an integrated analysis of physical?Cchemical parameters, (2) use of Geographical Information System, and (3) Water Quality Index (WQI) calculation. The physical?Cchemical results were compared with the World Health Organization (WHO) standards for drinking and public health, in order to have an overview of the present groundwater quality. According to the overall assessment of the basin, almost all the parameters analyzed are above the desirable limits of WHO. Using GIS contouring methods with Arcview 3.2a, spatial distribution maps of pH, TDS, EC, TH, Cl, HCO3, SO4, NO3, Ca, Mg, Na, and K have been created. The spatial analysis of groundwater quality patterns of the study area shows that the TDS value increases from north-west to south-east following the general trend of the Khairat aquifer flow direction. The spatial distribution map of TH shows that a majority of the groundwater samples falls in the very hard category. WQI was used to assess the suitability of groundwater from the study area for human consumption. From the WQI assessment, over 82% of the water samples fall within the ??Poor?? and ??Very poor?? categories, suggesting that groundwater from the south-eastern of the El Khairat deep aquifer is unsuitable for drinking purposes.  相似文献   

6.
地下水温度示踪理论与方法研究进展   总被引:6,自引:0,他引:6  
对地下水温度示踪理论与方法的相关研究做了评述,介绍了当前地质体中温度场与渗流场耦合作用模型、数值模拟技术和渗流参数反演方法,并从温度示踪方法的两个主要应用领域:地表水与地下水交换和工程地下水渗漏探测(以堤坝为例),说明地下水温度示踪的应用研究.在地质体中温度场与渗流场耦合模型方面,裂隙介质、非饱和带、复杂边界条件和非D...  相似文献   

7.
Significant intrusion of geothermal water into fresh groundwater takes place in the Puebla Valley aquifer system, Mexico. The decline in the potentiometric surface due to the overexploitation of the groundwater induces this intrusion. This hydrological system comprises three aquifers located in Plio-Quaternary volcanic sediments and Mesozoic calcareous rocks. The hydraulic balance of the aquifer shows that the annual output exceeds the natural inputs by 12 million m3. Between 1973 and 2002, a drop in the potentiometric surface, with an 80 m cone of depression, was identified in a 5-km-wide area located southwest of the city of Puebla. Chemical analyses performed on water samples since 1990 have shown an increase in total dissolved solids (TDS) of more than 500 mg/L, coinciding with the region showing a cone of depression in the potentiometric surface. A three-dimensional flow and transport model, based on the hydrogeological and geophysical studies, was computed by using the MODFLOW and MT3D software. This model reproduces the evolution of the aquifer system during the last 30 years and predicts for 2010 an additional drawdown in the potentiometric surface of 15 m, and an increase in the geothermal water intrusion.  相似文献   

8.
A stochastic study of long-term forecasts of seawater intrusion with an application to the Korba aquifer (Tunisia) is presented. Firstly, a geostatistical model of the exploitation rates was constructed, based on a multi-linear regression model combining incomplete direct data and exhaustive secondary information. Then, a new method was designed and used to construct a geostatistical model of the hydraulic conductivity field by combining lithological information and data from hydraulic tests. Secondly, the effects of the uncertainties associated with the pumping rates and the hydraulic conductivity field on the 3D density-dependent transient model were analysed separately and then jointly. The forecasts of the impacts of two different management scenarios on seawater intrusion in the year 2048 were performed by means of Monte Carlo simulations, accounting for uncertainties in the input parameters as well as possible changes of the boundary conditions. Combining primary and secondary data allowed maps of pumping rates and the hydraulic conductivity field to be constructed, despite a lack of direct data. The results of the stochastic long-term forecasts showed that, most probably, the Korba aquifer will be subject to important losses in terms of regional groundwater resources.  相似文献   

9.
10.
The implementation of the EU-Water Framework Directive (WFD) might also be considered an approach for the implementation of Integrated Water Resources Management in Europe. The WFD outlines the ambitious goal of attaining “good status” for Europe’s rivers, lakes, groundwater bodies and coastal waters by 2015 in accordance with clearly defined time lines and legally binding programmes of measures. EU member states submitted their WFD river basin management plans to the European Commission in March 2010. Almost all member states accomplished the formal implementation, but nations like Germany are far from achieving the “good status”. For Germany, exemptions have been claimed for 82 % of all surface water bodies and for 36 % of all groundwater bodies. According to the identified significant pressures and impacts, the German Federal States, the Federal government and the European Union will have to significantly increase the coordination and coherence of the policies in the field of agriculture, energy generation, transport (shipping) and production or use of chemicals. The next generation of river basin management plans may be used for the harmonisation of these topics and extend to the polluter-specific characterization of water body pressures and impacts, structures and methods of monitoring, allowing the differentiation of multiple stressors, the designation of heavily modified water bodies and the determination of good ecological potential, exemptions and their justification, coherent transregional management objectives and reporting issues. The present study focuses on the assessment of the status of German water bodies, the achievement of environmental objectives and the necessary measures required to meet the goals.  相似文献   

11.
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.  相似文献   

12.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

13.
 Two test cases from Israel are presented herein employing the decay rate of radon along the flow path to assess groundwater flow velocities. Groundwater flow reaching the fault zone emerges in several places along the rift fault zone as thermal springs because of deep water confinement. The high water temperature of the surface is indicative of high vertical flow velocities, which maintains the original high temperatures. Knowing the Rn content at a source point and at a given down-gradient, and assuming no Rn addition from the water itself or along the flow path, one can calculate the flow velocity based on the Rn half-life time. The decay of Rn in western Galilee was found to be ∼570–150 pCi/l, and in the Dead Sea area from 5000–2000 pCi/l along a respective flow path of 1000 and 200 m, Based on the above, the calculated flow velocities were compared with those obtained from pumping tests in the study area. The method is applicable, because of the short Rn half-life, to cases of high Rn contents, short distances and high flow velocities. Received: 18 January 2000 · Accepted: 21 March 2000  相似文献   

14.
Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.  相似文献   

15.
This work present results of the hydrochemical and isotopic studies on groundwater samples from the study area. Chemical and environmental isotope data are presented and discussed in terms of the origin of dissolved species and of groundwater. All of the investigated groundwater are categorized into two chemical types: low and relatively high mineralized waters type. Interpretation of chemical data, based on both thermodynamic calculations and stability diagrams, suggests that the chemical evolution of groundwater is primarily controlled by water-rock interactions. Interpretation of 18O and 2H suggests that the recharge of the investigated groundwater may result from differents mechanisms  相似文献   

16.
17.
The control exerted by the hydrostratigraphic structure on aquifer recharge, groundwater flow and discharge along the coastal areas of a Mediterranean basin (Salento peninsula, about 5,000?km2 wide, southern Italy) is assessed through the development and application of a groundwater flow model based on the reconstruction of the hydrostratigraphic architecture at the regional scale. The hydrostratigraphic model, obtained by processing surface and subsurface data, is applied to map the top of the main aquifer, which is hosted in the deep hydrostratigraphic unit corresponding to Cretaceous and Oligocene limestones with complex geometrical relationships with the sea. It is also used to estimate the aquifer recharge, which occurs by percolation through overlying younger sediments with low permeability. These data are completed with information about the soil use to estimate water abstraction for irrigation and with literature data to estimate the water abstraction for drinking and industrial purposes. The above-sketched conceptual model is the basis for a finite difference groundwater 2D pseudo-stationary flow model, which assumes the following fundamental approximations: the fractured and karst limestone hydrostratigraphic unit can be approximated, at the model scale, as a continuous medium for which the discrete Darcy??s law is valid; the transition zone between salt and fresh water is so small with respect to the grid spacing that the Ghyben?CHerzberg??s approximation for a sharp interface can be applied. Along the coastline different boundary conditions are assigned if the top of the limestone hydrostratigraphic unit lies either above the sea level (the aquifer has a free surface and fresh water is drained), or below the sea level (the aquifer is under pressure and the contact with sea occurs off-shore). The groundwater flow model correctly predicts the areas where the aquifer is fully saturated with salt water.  相似文献   

18.
Groundwater is of a paramount importance in arid areas, as it represents the main water resource to satisfy the different needs of the various sectors. Nevertheless, coastal aquifers are generally subjected to seawater intrusion and groundwater quality degradation. In this study, the groundwater quality of the coastal Jeffara aquifer (southeastern Tunisia) is evaluated to check its suitability for irrigation purposes. A total of 74 groundwater samples were collected and analyzed for various physical and chemical parameters, such as, electrical conductivity, pH, dissolved solids (TDS), Na, K, Ca, Mg, Cl, HCO3, and SO4. Sodium adsorption ratio, magnesium adsorption ratio, Sodium percentage, and permeability index were calculated based on the analytical results. The analytical results obtained show a strong mineralization of the water in the studied aquifer. TDS concentrations range from 3.40 to 18.84 g?L?1. Groundwater salinity was shown to be mainly controlled by sodium and chloride. The dominant hydrochemical facieses are Na–Cl–Ca–SO4, mainly as a result of mineral dissolution (halite and gypsum), infiltration of saline surface water, and seawater intrusion. Assessment of the groundwater quality of the different samples by various methods indicated that only 7% of the water, in the northwest of the study area, is considered suitable for irrigation purposes while 93% are characterized by fair to poor quality, and are therefore just suitable or unsuitable for irrigation purposes.  相似文献   

19.
El Shalal-Kema area is located east of Aswan town and Nile River. The Quaternary sediments (unconsolidated material of sands, gravels, and clays intercalation) represent the main aquifer in the studied area. Its water is under unconfined condition, and the water table is shallow (vary from 7.5 to 16.3 m). The concerned aquifer is recharged mainly from Aswan Dam Lake, from the excess irrigation water and from septic tanks, where the area is not served by sewage system. The direction of the groundwater movement is generally from south to north. The transmissivity values of the Quaternary aquifer (from three pumping tests) are relatively high (vary from 1,996 to 3,029 m2/day). The exploitation of groundwater is carried out where there is continuous withdrawal for industrial and domestic uses with a total average quantity of groundwater of 71,304 m3 per day (25.67 million m3 per year). The hydrochemical characteristics of the Quaternary aquifer is studied based on the chemical analysis of 29 groundwater and four surface water samples collected from different sites. The chemical composition of the groundwater is dominated by calcium Ca2+ from the cations and bicarbonate (HCO 3 ? ) from the anions, and the order of cation abundance is Ca2+ > Na+ > Mg2+ > K+ and HCO 3 ? > SO 4 2? > Cl? among the anions. The groundwater types are normal chloride water, normal sulfate water, and normal carbonate water. The hypothetical salt combination revealed the presence of different salts arranged in terms of their predominant as Ca(HCO3)2, Mg(HCO3)2, NaCl, Na2SO4, MgSO4, KCL, NaHCO3, MgCl2, CaSO4, and K2SO4. The analytical measurements to the NO2 and NH3 reveal that their values decrease in summer and increase in winter due to the stoppage of pumping which leads to the increase of the wastewater quantities that reach the groundwater. The chemical and microbiological analyses show that the aquifer in this area is contaminated with fecal and disease-causing bacteria. The main cause of this contamination is the outflow from the septic tanks; therefore, the construction of sewage network is a vital solution. Chlorination is important to disinfect the groundwater at the tanks before its distribution to the houses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号