首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In the Middle Atlas of Morocco, alkali basaltic flows record successive weathering phases during the Quaternary. In fresh basalt interior and intermediate external zones, the first weathering stage is characterised by glass dissolution and the formation of a Si-Al poorly-crystallised product. Advanced weathering phases are characterised by 10 Å halloysite, kaolinite and goethite, located within the primary minerals or as secondary products in fissures. Olivine and iddingsite are transformed into Si-rich goethite, plagioclase into halloysite and pyroxene into a mixture of halloysite + geothite. Dissolution of Ti-magnetite and ilmenite yielded Ti-rich products. In these conditions, the weathering of basalts and development of a soil matrix are accompanied by the elimination of certain chemical elements, such as Si, Ca, Na and K, and the concentration of Fe and Al. In the soil, clay minerals such as illite and vermiculite, do not have any genetic relationship with weathered basalt and were probably introduced externally.  相似文献   

3.
Low molecular weight organic acids (LMWOA) are produced in soil by various biological and chemical processes and can exhibit substantial metal complexing and dissolution capacity. The reactivity of these compounds in the soil environment is dependent on their non-complexed concentration in the soil solution. Adsorption of LMWOA has been shown to reduce their concentration in the soil solution; however, little is known about the reduction of LMWOA concentration due to microbial degradation. To examine the extent of microbial degradation in reducing LMWOA concentration in the soil solution, three-biometer methods were used: a soil biometer flask, an in-situ field biometer and a soil column biometer. Four soil horizons were used with each method. To each soil sample, 2.0×10−6 moles of organic acid containing 3.7×104 Bq total activity was applied. The 14C-radiolabeled aliphatic and aromatic acids studied included oxalic, malonic, succinic, and phthalic acid. Evolved 14CO2 was trapped in 0.5 mol l−1 NaOH and measured using liquid scintillation counting. Labeled acids degraded rapidly within the first 5 days for the Ap1, Ap2, and BA horizons, with a generally slower rate of 14CO2 evolution being observed for the Bt1 horizon. The % degradation of labeled acid was substantially greater for the soil biometer flask method, compared to the field and soil column biometer methods. The average % degradation for the soil biometer flask was 67% for all soil horizons and organic acids, compared to 14% for the field biometer and 13% for the soil column biometer. Results indicate that substantial microbial degradation of organic acids can occur within a relatively short time period and the biometer method selected can influence the % acid degraded. Based on primary results, the soil column biometer method better approximated microbial degradation under field conditions, as evaluated using the field biometer.  相似文献   

4.
Al-containing MgSiO3 perovskites of four different compositions were synthesized at 27 GPa and 1,873 K using a Kawai-type high-pressure apparatus: stoichiometric compositions of Mg0.975Si0.975Al0.05O3 and Mg0.95Si0.95Al0.10O3 considering only coupled substitution Mg2+ + Si4+ = 2Al3+, and nonstoichiometric compositions of Mg0.99Si0.96Al0.05O2.985 and Mg0.97Si0.93Al0.10O2.98 taking account of not only the coupled substitution but also oxygen vacancy substitution 2Si4+ = 2Al3+ + VO¨. Using the X-ray diffraction profiles, Rietveld analyses were performed, and the results were compared between the stoichiometric and nonstoichiometric perovskites. Lattice parameter–composition relations, in space group Pbnm, were obtained as follows. The a parameters of both of the stoichiometric and nonstoichiometric perovskites are almost constant in the X Al range of 0–0.05, where X Al is Al number on the basis of total cation of two (X Al = 2Al/(Mg + Si + Al)), and decrease with further increasing X Al. The b and c parameters of the stoichiometric perovskites increase linearly with increasing Al content. The change in the b parameter of the nonstoichiometric perovskites with Al content is the same as that of the stoichiometric perovskites within the uncertainties. The c parameter of the nonstoichiometric perovskites is slightly smaller than that of the stoichiometric perovskites at X Al of 0.10, though they are the same as each other at X Al of 0.05. The Si(Al)–O1 distance, Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O distance of the nonstoichiometric perovskites keep almost constant up to X Al of 0.05, and then the Si(Al)–O1 increases and both of the Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O decrease with further Al substitution. These results suggest that the oxygen vacancy substitution may be superior to the coupled substitution up to X Al of about 0.05 and that more Al could be substituted only by the coupled substitution at 27 GPa. The Si(Al)–O1 distance and one of two independent Si(Al)–O2 distances in Si(Al)O6 octahedra in the nonstoichiometric perovskites are always shorter than those in the stoichiometric perovskite at the same Al content. These results imply that oxygen defects may exist in the nonstoichiometric perovskites and distribute randomly.  相似文献   

5.
6.
Study on the kinetics of iron oxide leaching by oxalic acid   总被引:2,自引:0,他引:2  
The presence of iron oxides in clay or silica raw materials is detrimental to the manufacturing of high quality ceramics. Although iron has been traditionally removed by physical mineral processing, acid washing has been tested as it is more effective, especially for extremely low iron (of less than 0.1% w/w). However, inorganic acids such as sulphuric or hydrochloric acids easily contaminate the clay products with SO42− and Cl, and therefore should be avoided as much as possible. On the other hand, if oxalic acid is used, any acid left behind will be destroyed during the firing of the ceramic products. The characteristics of dissolution of iron oxides were therefore investigated in this study.The dissolution of iron oxides in oxalic acid was found to be very slow at temperatures within the range 25–60 °C, but its rate increases rapidly above 90 °C. The dissolution rate also increases with increasing oxalate concentration at the constant pH values set within the optimum range of pH2.5–3.0. At this optimum pH, the dissolution of fine pure hematite (Fe2O3) (105–140 μm) follows a diffusion-controlled shrinking core model. The rate expression expressed as 1 − (2 / 3)x − (1 − x)2 / 3 where x is a fraction of iron dissolution was found to be proportional to [oxalate]1.5.The addition of magnetite to the leach liquor at 10% w/w hematite was found to enhance the dissolution rate dramatically. Such addition of magnetite allows coarser hematite in the range 0.5–1.4 mm to be leached at a reasonable rate.  相似文献   

7.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

8.
Dissolution of the synthetic hydroxylapatite (HAP) and fluorapatite (FAP) in pure water was studied at 25 °C and 45 °C in a series of batch experiments. The XRD, FT-IR and SEM analyses indicated that the synthetic, microcrystalline HAP and FAP with apatite structure used in the experiments were found to have no obvious variation after dissolution except that the existence of OH groups in FT-IR spectra for FAP after 2880 h dissolution was observed. During the HAP dissolution (0–4320 h), the aqueous calcium and phosphate concentrations reached the maxima after 120 h and then decreased slowly with time. For the FAP dissolution in pure water, after a transient time of 1440 h (< 60 d), element concentrations and pH became constant suggesting attainment of a steady-state between the solution and solid. During early stages of the FAP dissolution reaction (< 72–120 h), mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P, Ca:F and P:F being lower than mineral stoichiometric ratios of Ca5(PO4)3F, i.e., 1.67, 5.0 and 3.0, respectively. This indicated that F were preferentially released compared to Ca from the mineral structure. The mean Ksp values were calculated by using PHREEQC for HAP of 10− 53.28 (10− 53.02–10− 53.51) and for FAP of 10− 55.71 (10− 55.18–10− 56.13) at 25 °C, the free energies of formation ΔGfo[HAP] and ΔGfo[FAP] were calculated to be − 6282.82 kJ/mol and − 6415.87 kJ/mol, respectively.  相似文献   

9.
In order to use lithium isotopes as tracers of silicate weathering, it is of primary importance to determine the processes responsible for Li isotope fractionation and to constrain the isotope fractionation factors caused by each process as a function of environmental parameters (e.g. temperature, pH). The aim of this study is to assess Li isotope fractionation during the dissolution of basalt and particularly during leaching of Li into solution by diffusion or ion exchange. To this end, we performed dissolution experiments on a Li-enriched synthetic basaltic glass at low ratios of mineral surface area/volume of solution (S/V), over short timescales, at various temperatures (50 and 90 °C) and pH (3, 7, and 10). Analyses of the Li isotope composition of the resulting solutions show that the leachates are enriched in 6Li (δ7Li = +4.9 to +10.5‰) compared to the fresh basaltic glass (δ7Li = +10.3 ± 0.4‰). The δ7Li value of the leachate is lower during the early stages of the leaching process, increasing to values close to the fresh basaltic glass as leaching progresses. These low δ7Li values can be explained in terms of diffusion-driven isotope fractionation. In order to quantify the fractionation caused by diffusion, we have developed a model that couples Li diffusion with dissolution of the glassy silicate network. This model calculates the ratio of the diffusion coefficients of both isotopes (a = D7/D6), as well as its dependence on temperature, pH, and S/V. a is mainly dependent on temperature, which can be explained by a small difference in activation energy (0.10 ± 0.02 kJ/mol) between 6Li+ and 7Li+. This temperature dependence reveals that Li isotope fractionation during diffusion is low at low temperatures (T < 20 °C), but can be significant at high temperatures. However, concerning hydrothermal fluids (T > 120 °C), the dissolution rate of basaltic glass is also high and masks the effects of diffusion. These results indicate that the high δ7Li values of river waters, in particular in basaltic catchments, and the fractionated values of hydrothermal fluids are mainly controlled by precipitation of secondary phases.  相似文献   

10.
《Geochimica et cosmochimica acta》1999,63(19-20):3261-3275
Studies on the dissolution kinetics of kaolinite were performed using batch reactors at 25°C and in the pH range from 1 to 13. A rapid initial dissolution step was first observed, followed by a linear kinetic stage reached after approximately 600 hr of reaction during which the kaolinite dissolves congruently at pH < 4 and pH > 11. The apparent incongruency between pH 5 and 10 was due to the precipitation of an Al–hydroxide phase. The true dissolution rates were computed from the amount of Si released into solution. The rate dependence on pH can be described by: r = 10−12.19aH+0.55 + 10−14.36 + 10−10.71aOH0.75Between pH 5 and 10, the rate is approximately constant, although a smooth minimum was observed at pH close to 9. mAn attempt was made to obtain a general rate law based on the coordination theory, which was first applied to the mineral dissolution studies by Stumm and co-workers. The kinetic data were combined with the results obtained for the surface speciation by Huertas et al. (1998). It is possible to express the linear dissolution rate as a simple power function of the concentration of the surface sites active in various pH ranges: r = 10−8.25 [>Al2OH2+] + 10−10.82 [>AlOH2+]0.5 + 10−9.1 [>Al2OH + >AlOH + >SiOH] + 103.78 [>Al2O + >AlO]3This equation assumes that the dissolution mechanism is mainly controlled by the two Al surface sites (external and internal structural hydroxyls, and aluminol at the crystal edges) under both acidic and alkaline conditions. The model reflects well the important contribution of the crystal basal planes to the dissolution of kaolinite.  相似文献   

11.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

12.
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (60 wt%) and quartz polymorphs (35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10−16 to 10−17 mol s−1 kg tuff−1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10−15 to 10−16 mol s−1 kg tuff−1 for percolation fluxes of 15 mm a−1 and 1 mm a−1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a−1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (50 mg L−1) may inhibit feldspar dissolution.  相似文献   

13.
《Geochimica et cosmochimica acta》1999,63(23-24):3983-3995
Exact solutions to equations governing isothermal diffusive dissolution of a crystalline slab in a ternary liquid were obtained to include the effect of coupled chemical diffusion in the liquid. These analytical results, supplemented by approximate solutions valid for slow dissolving, provide new insights into the characteristics of diffusive dissolution in ternary systems. Dissolution rate is proportional to square root of time in diffusive dissolution. The coefficient of proportionality is a function of diffusion coefficients, liquidus relation, melt composition at the crystal–melt interface, and compositions of the dissolving crystal and starting melt. In the limit of slow dissolving, the dissolution rate can be written in terms of three dimensionless parameters that are functions of the aforementioned parameters. Dissolution rate is proportional to the diffusion rate of the slow eigen component in the melt when the diffusion rate of the minor eigen component is much slower than the diffusion rate of the major eigen component.Laboratory experiments of diffusive dissolution of single crystals and polycrystalline aggregates of quartz in a haplodacitic melt (25 wt.% CaO, 15 wt.% Al2O3, and 60 wt.% SiO2) were conducted at 1500°C and 1 GPa. Measured dissolution distances (Xb, in microns) are proportional to the square root of experimental run time (t, in seconds), Xb = −0.620 (±0.019) √t. Chemical concentration profiles measured from quenched melts are invariant with time when displayed against the distance (measured from the crystal–melt interface) normalized by the square root of time. The melt compositions at the crystal–melt interface, extrapolated from the measured diffusion profiles in the quenched melts, are within 0.2 wt.% of the independently measured quartz liquidus in the ternary CaO–Al2O3–SiO2 at 1500°C and 1 GPa. These results suggest that crystal and melt are in chemical equilibrium at their interface shortly after the onset of dissolution. Diffusive dissolution of quartz and quartzite is characterized by slow dissolving. Using quartz liquidus as one of the boundary conditions, it has been shown that the calculated dissolution distances and concentration profiles are in good agreement with the experimentally measured ones. Coupled diffusion played an essential role in quartz and quartzite dissolution in haplodacitic to haplobasaltic melts, and is likely to play an important role in diffusion-limited kinetic processes such as crystal growth and dissolution in natural melts of basaltic–rhyolitic compositions.  相似文献   

14.
Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt.% and compositions similar to Apollo 10 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (< 13 wt.%) and high FeO (> 18 wt.%) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.  相似文献   

15.
Organic material in metal contaminated soils around an abandoned magnetite mine–smelter complex in the critical Highlands watershed protects the groundwater and surface water from contamination. Metals in these waters were consistently below local and national water standards. Two groups of soil types cover the area: (1) Group A disturbed metal-rich soils, and (2) Group B undisturbed organic soils. Chromium and nickel were more elevated than other metals with Cr more widespread than Ni. In Group A, Cr correlated strongly with sesquioxides in the lower horizons (Fe2O3: r = 0.74, p < 0.025; Al2O3: r = 0.92, p < 0.005). In Group B, Cr correlated strongly (r = 0.96, p < 0.005) with soil organic matter (SOM) in the O-horizons. Ni–Cr (Group A: 52 and 70% in O- and lower horizons, respectively; Group B: ~100% in both horizons) and V–Cr correlations (78% only in Group A lower horizons) suggest similar retention mechanisms for these elements. Average soil \textpH\textCaCl2 {\text{pH}}_{{{\text{CaCl}}_{2} }} for both groups ranged between 3.65 and 5.91, suggesting that soil acidity is determined by organic acids and solubility of Al3+ releasing H+ ions. SOM and sesquioxides contribute significantly to creating naturally occurring filtration systems, removing metals, and protecting water quality. High Ca, Fe, and Ti in Group A soils suggest slag and ash were mixed into the soils. Some low-Cr sources include magnetite, slag, and ash (100, 100 and 200 mg/kg, respectively). Constant ZrO 2 :TiO 2 ratios in the lower soils indicate soil formation from breakdown of underlying tailing rocks, contributing Cr to these layers.  相似文献   

16.
Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition.Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4.Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.  相似文献   

17.
The types and structures of adsorption complexes formed by oxalate at boehmite (γ-AlOOH)/water and corundum (α-Al2O3)/water interfaces were determined using in situ attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and quantum chemical simulation methods. At pH 5.1, at least four different oxalate species were found at or near the boehmite/water interface for oxalate surface coverages (Γox) ranging from 0.25 to 16.44 μmol/m2. At relatively low coverages (Γox < 2.47), strongly adsorbed inner-sphere oxalate species (IR peaks at 1286, 1418, 1700, and 1720 cm−1) replace weakly adsorbed carbonate species, and a small proportion of oxalate anions are adsorbed in an outer-sphere mode (IR peaks at 1314 and 1591 cm−1). IR peaks indicative of inner-sphere adsorbed oxalate are also observed for oxalate at the corundum/water interface at Γox = 1.4 μmol/m2. With increasing oxalate concentration (Γox > 2.47 μmol/m2), the boehmite surface binding sites for inner-sphere adsorbed oxalate become saturated, and excess oxalate ions are present dominantly as aqueous species (IR peaks at 1309 and 1571 cm−1). In addition to these adsorption processes, oxalate-promoted dissolution of boehmite following inner-sphere oxalate adsorption becomes increasingly pronounced with increasing Γox and results in an aqueous Al(III)-oxalate species, as indicated by shifted IR peaks (1286 → 1297 cm−1 and 1418 → 1408 cm−1). At pH 2.5, no outer-sphere adsorbed oxalate or aqueous oxalate species were observed. The similarity of adsorbed oxalate spectral features at pH 2.5 and 5.1 implies that the adsorption mechanism of aqueous HOx species involves loss of protons from this species during the ligand-exchange reaction. As a consequence, adsorbed inner-sphere oxalate and aqueous Al(III)-oxalate complexes formed at pH 2.5 have coordination geometries very similar to those formed at pH 5.1.The coordination geometry of inner-sphere adsorbed oxalate species was also predicted using quantum chemical geometry optimization and IR vibrational frequency calculations. Geometry-optimized Al8O12 and Al14O22 clusters with the reactive surface Al site coordinated by three oxygens were used as model substrates for corundum and boehmite surfaces. Among the models considered, calculated IR frequencies based on a bidentate side-on structure with a 5-membered ring agree best with the observed frequencies for boehmite/oxalate/water samples at Γox = 0.25 to 16.44 μmol/m2 and pH 2.5 and 5.1, and for a corundum/oxalate/water sample at Γox = 1.4 μmol/m2 and pH 5.1. Based on these results, we suggest that oxalate bonding on boehmite and corundum surfaces results in 5-coordinated rather than 4- or 6-coordinated Al surface sites.  相似文献   

18.
19.
Ten highly weathered soils in southeastern Nigeria were sampled from their typical A and B horizons for analyses. The objectives were to determine the different forms of Fe and Al oxides in the soils and relating their occurrence to phosphate availability and retention in the soils. The soils are deep and often physically degraded but are well drained and coarse in the particle size distribution. They are mostly dominated by kaolinite in their mineralogy with very high values of SiO2. The soils are acidic with low soil organic carbon (SOC) contents. The elements in the exchange complex are also low thus reflecting in the low CEC of the soil. Available phosphorus (P) in the soils are generally low while total P ranged from 157 to 982 mg kg−1 with an overall average of 422 mg kg−1. Total Fe in the soil is highest and their order represented as follows: Fet > Fed > Feox ≥ Fep. The pyrophosphate extractable Fe was always higher in the top soil than in the subsoil and was attributed to the fact that these forms of Fe are associated with organic matter which is more abundant in topsoil than in subsoil. Like in Fe forms, the order of Al occurrence could generally be presented as; Alt > Ald > Alox > Alp. More Fe and Al oxides in the soils are strongly crystalline while a small quantity is poorly crystalline Fe forms. The amorphous forms of both Fe and Al are very low in the soils when compared with the crystalline forms. The oxides that show very strong affinity to total P are Fed–Feox, Fed, Ald, Fet, Feox and Alox/Ald. To overcome this problem of P retention in the soil, we recommend constant liming of these soils to neutralize them, application of organic matter and of high dosage of phosphate fertilizer to the soils.  相似文献   

20.
The distribution of rare earth elements (REE) between clinopyroxene (cpx) and basaltic melt is important in deciphering the processes of mantle melting. REE and Y partition coefficients from a given cpx-melt partitioning experiment can be quantitatively described by the lattice strain model. We analyzed published REE and Y partitioning data between cpx and basaltic melts using the nonlinear regression method and parameterized key partitioning parameters in the lattice strain model (D 0, r 0 and E) as functions of pressure, temperature, and compositions of cpx and melt. D 0 is found to positively correlate with Al in tetrahedral site (Al T ) and Mg in the M2 site (MgM2) of cpx and negatively correlate with temperature and water content in the melt. r 0 is negatively correlated with Al in M1 site (AlM1) and MgM2 in cpx. And E is positively correlated with r 0. During adiabatic melting of spinel lherzolite, temperature, Al T , and MgM2 in cpx all decrease systematically as a function of pressure or degree of melting. The competing effects between temperature and cpx composition result in very small variations in REE partition coefficients along a mantle adiabat. A higher potential temperature (1,400°C) gives rise to REE partition coefficients slightly lower than those at a lower potential temperature (1,300°C) because the temperature effect overwhelms the compositional effect. A set of constant REE partition coefficients therefore may be used to accurately model REE fractionation during partial melting of spinel lherzolite along a mantle adiabat. As cpx has low Al and Mg abundances at high temperature during melting in the garnet stability field, REE are more incompatible in cpx. Heavy REE depletion in the melt may imply deep melting of a hydrous garnet lherzolite. Water-dependent cpx partition coefficients need to be considered for modeling low-degree hydrous melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号