首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We measured the electrical resistivity of face-centered-cubic (fcc) structured iron hydrides at high pressures up to 65 GPa and high temperatures in a laser-heated diamond anvil cell. The results indicate that the resistivity of stoichiometric fcc FeHx (x ~ 1.0) is smaller than that of fcc Fe at the same pressure and temperature conditions. The same behavior was also observed in fcc FeNiHx (x ~ 1.0). On the other hand, hydrogen-poor fcc FeHx (x < 0.77) showed a resistivity comparable to that of the fcc phase of pure iron. Therefore, we conclude that the stoichiometric fcc Fe (–Ni) hydride is more conductive than Fe (–Ni) with the same crystal symmetry, and the impurity resistivity of hydrogen in Fe is vanishingly small. Even if hydrogen is the major light element in the Earth's core, it would have little influence on the electrical and thermal conductivity of Fe–Ni alloys, and hence the thermal evolution of the core.  相似文献   

2.
A method of in situ X-ray diffraction at Spring-8 (Japan) was used to analyze simultaneously the hydrogen incorporation into Fe and Fe3C, as well as to measure the relative stability of carbides, nitrides, sulfides, and hydrides of iron at pressures of 6–20 GPa and temperatures up to 1600 K. The following stability sequence of individual iron compounds was established in the studied pressure and temperature interval: FeS > FeN > FeC > FeH > Fe. A change in the unit-cell volume as compared to the known equations of state was used to estimate the hydrogen contents in carbide Fe3C and hydride FeHx. Data on hydride correspond to stoichiometry with x ≈ 1. Unlike iron sulfides and silicides, the solubility of hydrogen in Fe3C seemed to be negligibly low—within measurement error. Extrapolating obtained data to pressures of the Earth’s core indicates that carbon and hydrogen are mutually incpompatible in the iron–nickel core, while nitrogen easily substitutes carbon and may be an important component of the inner core in the light of the recent models assuming the predominance of iron carbide in its composition.  相似文献   

3.
The stability and pressure–volume equation of state of iron–silicon alloys, Fe-8.7 wt% Si and Fe-17.8 wt% Si, have been investigated using diamond-anvil cell techniques up to 196 and 124 GPa, respectively. Angular–dispersive X-ray diffractions of iron–silicon alloys were measured at room temperature using monochromatic synchrotron radiation and an imaging plate (IP). A bcc–Fe-8.7 wt% Si transformed to hcp structure at around 1636 GPa. The high-pressure phase of Fe-8.7 wt% Si with hexagonal close-packed (hcp) structure was found to be stable up to 196 GPa and no phase transition of bcc–Fe-17.8 wt% Si was observed up to 124 GPa. The pressure–volume data were fitted to a third-order Birch–Murnaghan equation of state (BM EOS) with zero–pressure parameters: V0=22.2(8) Å3, K0=198(9) GPa, and K0=4.7(3) for hcp–Fe-8.7 wt% Si and V0=179.41(45) Å3, K0=207(15) GPa and K0=5.1(6) for Fe-17.8 wt% Si. The density and bulk sound velocity of hcp–Fe-8.7 wt% Si indicate that the inner core could contain 3–5 wt% Si.  相似文献   

4.
A reconnaissance investigation has been carried out on melting relationships in the system Fe-FeO at pressures up to 25 GPa and temperatures up to 2200° C using an MA-8 apparatus. Limited studies were also made of the Co-CoO and Ni-NiO systems. In the system FeFeO, the rapid exsolution of FeO from liquids during quenching causes some difficulties in interpretation of textures and phase relationships. The Co-CoO and Ni-NiO systems are more tractable experimentally and provide useful analogues to the Fe-FeO system. It was found that the broad field of liquid immiscibility present at ambient pressure in the Co-CoO system had disappeared at 18 GPa, 2200° C and that the system displayed complete miscibility between molten Co and CoO, analogous to the behaviour of the Ni-NiO system at ambient pressure. The phase diagram of the system Fe-FeO at 16 GPa and from 1600–2200° C was constructed from interpretations based on the textures of quenched run products. The solubility of FeO in molten iron is considerably enhanced by high pressures. At 16 GPa, the Fe-FeO eutectic contains about 10–15 mol percent FeO and the eutectic temperature in this iron-rich region of the system occurs at 1700±25° C, some 350° C below the melting point of pure iron at the same pressure. The solubility of FeO in molten Fe increases rapidly as temperature increases from 1700 to 2200° C. A relatively small liquid immiscibility field is present above 1900° C but is believed to be eliminated above 2200° C. This inference is supported by thermodynamic calculations on the positions of key phase boundaries. A single run carried out on an Fe50 FeO50 composition at 25 GPa and 2200° C demonstrated extensive and probably complete miscibility between Fe and FeO liquids under these conditions. The melting point of iron is decreased considerably by solution of FeO at high pressures; moreover, the melting point gradient (dP/dT) of the Fe-FeO eutectic is much smaller than that of pure iron and is also smaller than that of mantle pyrolite under the P, T conditions studied. These characteristics make it possible for melting of metal phase and segregation of the core to proceed within the Earth under conditions where most of the mantle remains below solidus temperatures. Under these conditions, the core would inevitably contain a large proportion of dissolved FeO. It is concluded therefore, that oxygen is likely to be the principal light element in the core. The inner core may not be composed of pure iron, as often proposed. Instead, it may consist of a crystalline oxide solid solution (Ni, Fe)2O.  相似文献   

5.
The effect of (Mg,Fe) substitution on the compression and pressure-induced amorphization of olivines has been investigated up to more than 50 GPa in a diamond anvil cell through energy-dispersive X-ray diffraction experiments with synchrotron radiation. For the four (Mg1–x , Fe x )2SiO4 olivines studied, the compressibility is the highest along the b axis and the smallest along the a axis. For compositions with x = 0, 0.17, 0.66, and 1, the slope of the volume-pressure curves shows a rapid decrease at pressures of around 42, 34, 20 and 10 GPa, respectively. Assuming K0 = 4, we obtained at lower pressures with a Birch-Murnaghan equation of state essentially the same room-pressure bulk modulus for all olivines, namely K 0 = 131 ± 6 GPa, in agreement with previous single-crystal compression and ultrasonic measurements. At higher pressures, the compression becomes nearly isotropic and the materials very stiff. These changes could precede partial transformation of olivines to a high-pressure polymorph related to the spinel structure. Only a small fraction of olivines seems to transform actually to this phase, however, because most of the material undergoes instead pressure-induced amorphization which take place at considerably higher pressures for Mg-than for Fe-rich olivines.  相似文献   

6.
A single-crystal of composition CaNiSi2O6 (space group C2/c) was investigated at high pressure up to about 7.8 GPa by X-ray diffraction. The unit-cell parameters were measured at 18 different pressures. The P-V data were fitted by a third-order Birch-Murnaghan equation of state V0=435.21(1) Å3, K 0=117.6(3) GPa and K=6.4(1). The linear axial compressibilities a, b, c and a sin are 2.14(1), 3.00(1), 2.43(1) and 1.63(1) × 10–3 GPa–1. Comparing the compressibility data with other CaM1Si2O6 pyroxenes we suggest that the empirical K × V = constant relationships are followed in C2/c pyroxenes only if the same valence electron character is shared.  相似文献   

7.
In-situ synchrotron X-ray diffraction experiments were conducted using the SPEED-1500 multi-anvil press of SPring-8 on stishovite SiO2 and pressure-volume-temperature data were collected at up to 22.5 GPa and 1,073 K, which corresponds to the pressure conditions of the base of the mantle transition zone. The analysis of room-temperature data yielded V0=46.56(1) Å3, KT 0=296(5) GPa and K T =4.2(4), and these properties were consistent with the subsequent thermal equation of state (EOS) analyses. A fit of the present data to high-temperature Birch-Murnaghan EOS yielded (KT /T) P =–0.046(5) GPa K–1 and = a + bT with values of a =1.26(11)×10–5 K–1 and b =1.29(17)×10–8 K–2. A fit to the thermal pressure EOS gives 0=1.62(9)×10–5 K–1, ( K T / T) V =–0.027(4) GPa K–1 and (2P /T 2) V =27(5)×10–7 GPa K–2. The lattice dynamical approach by Mie-Grüneisen-Debye EOS yielded 0=1.33(6), q =6.1(8) and 0=1160(120) K. The strong volume dependence of the thermal pressure of stishovite was revealed by the analysis of present data, which was not detectable by the previous high-temperature data at lower pressures, and this yields ( K T / T) V 0 and q 1. The analyses for the fictive volume for a and c axes show that relative stiffness of c axis to a axis is similar both on compression and thermal expansion. Present EOS enables the accurate estimate of density of SiO2 in the deep mantle conditions.  相似文献   

8.
The solubility of water in melts in the NaAlSi3O8–H2O system at high P and T was deduced from the appearance of quenched products and from water concentrations in the quenched glasses measured by ion probe, calibrated by hydrogen manometry. Starting materials were gels with sufficient water added to ensure saturation of the melts under the run conditions. Experiments were carried out for 10–30 h in an internally heated argon pressure vessel (eight at 1400° C and 0.2–0.73 GPa and three at 0.5 GPa and 900–1200° C) and for 1 h in a piston-cylinder apparatus (three at 1200° C, 1–1.3 GPa). No bubbles were observed in the glasses quenched at P<0.5 GPa or from T<1300° C at 0.5 GPa. Bubble concentration in glasses quenched from 1400° C was low at 0.5, moderate at 0.55 GPa and very high at 0.73 GPa and still higher in glasses quenched in the piston cylinder. Water concentration was measured in all glasses, except for the one at 0.55 GPa, for which it was only estimated, and for those at 0.73 GPa because bubble concentration was too high. Inferred water solubilities in the melt increase strongly with increasing P at 1400° C (from 6.0 wt% at 0.2 GPa to 15 at 0.55 GPa) and also with increasing T at 0.5 GPa (from 9.0 wt% at 900° C to 12.9 at 1400° C). The T variation of water solubility is fundamental for understanding the behaviour of melts on quenching. If the solubility decreases with T at constant P (retrograde solubility), bubbles cannot form by exsolution on isobaric quenching, whereas if the solubility is prograde they may do so if the cooling rate is not too fast. It is inferred from observed bubble concentrations and from our and previous solubility data that water solubility is retrograde at low P and prograde at and above 0.45 GPa; it probably changes with T from retrograde below to prograde above 900° C at 0.5 GPa. Moreover, the solubility is very large at higher pressures (possibly>30 wt% at 1.3 GPa and 1200° C) and critical behaviour is approached at 1.3 GPa and 1200° C. The critical curve rises to slightly higher P at lower T and intersects the three-phase or melting curve at a critical end point near 670° C and 1.5 GPa, above which albite coexists only with a supercritical fluid.  相似文献   

9.
The high-pressure behavior of -Fe2O3 has been studied under static compression up to 60 GPa, using a laser-heated diamond anvil cell. Synchrotron-based angular-dispersive X-ray diffraction shows that the sample remains in the corundum structure up to 50 GPa, but with the appearance of coexisting diffraction lines from a high-pressure phase at pressures above 45 GPa. A least-squares fit of low-pressure phase data to an Eulerian finite-strain equation of state yields linear incompressibilities of K a 0=749.5 (± 18.4) GPa and K c 0= 455.7 (± 21.4) GPa, differing by a factor of 1.6 along the two directions. The enhanced compressibility of the c axis may lead to breaking of vertex- or edge-sharing bonds between octahedra, inducing the high-pressure phase transformation at 50 GPa. Analysis of linear compressibilities suggests that the high-pressure phase above 50 GPa is of the Rh2O3 (II) structure. Continuous laser heating reveals a new structural phase transformation of -Fe2O3 at 22 GPa, to an orthorhombic structure with a=7.305(3) Å, b=7.850(3) Å, and c=12.877(14) Å, different from the Rh2O3 (II) structure.  相似文献   

10.
When quenched metastable wüstite (Fe.924O and Fe.947O) is held at 300°C at pressures up to 200 kbar in a diamond anvil cell, a mixture of magnetite, metallic iron and wüstite is found. We interpret this to indicate that magnetite plus metallic iron constitute the stable phase assemblage at pressures and temperatures below this boundary is stoichiometric FeO (a0 = 4.332 ± 0.001 A?) at pressures below 110 kbar at 300°C. However, just below the boundary in the pressure range 110 kbar to 200 kbar at 300°C, the residuál wüstite is non-stoichiometric (a0 < 4.332 A?). Data collected at pressures and temperatures above the boundary indicate that non-stoichiometric wüstite (FexO) plus metallic iron constitute the stable phase assemblage and that the value of x in FexO increases as pressure is increased isothermally to 100 kbar and then decreases as pressure is increased above 100 kbar.  相似文献   

11.
A semiempirical equation of state was derived for magnesite under the thermodynamic conditions of the Earth’s mantle. Within experimental uncertainties, it is consistent with thermochemical, ultrasonic, X-ray, and shock-wave data at temperatures from 15 K to the melting point and pressures of up to 100–130 GPa. The following values were recommended for the isothermal bulk modulus and its pressure derivative: K T = 111.71 GPa and K′ = 4.08. Thermodynamic analysis showed that magnesite does not decompose to periclase and CO2 under the thermodynamic conditions of the Earth’s lower mantle and outer core.  相似文献   

12.
The high-pressure behaviour of millerite NiS up to 34.7 GPa was studied using single-crystal X-ray diffraction techniques. Under ambient pressure, 8.3, 19.2 and 26.8 GPa crystal-structure determinations were performed. No phase transition was observed and the fit of the Birch-Murnaghan equation of state gave a bulk modulus K=111(1) GPa and a pressure derivative K=5.0(1) at high pressure and room temperature. The high-temperature modification of NiS belongs to the NiAs type and has the smaller volume per formula unit. High-pressure–high-temperature X-ray diffraction studies on NiS powder indicate that the transition temperature is strongly dependent on pressure. Owing to the higher compressibility of millerite compared with that of the high-temperature phase, it is assumed that the NiAs-type is not the stable phase at high pressures.  相似文献   

13.
Serpentinization produces molecular hydrogen(H2)that can support communities of microorganisms in hydrothermal fields;H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron,and consequently iron oxide(magnetite or hematite)forms.However,the mechanisms that control H2 and iron oxide formation are poorly constrained.In this study,we performed serpentinization experiments at 311℃ and 3.0 kbar on olivine(with 5% pyroxene),orthopyroxene,and peridotite.The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution.Olivine-derived serpentine had a significantly lower FeO content(6.57±1.30 wt.%)than primary olivine(9.86 wt.%),whereas orthopyroxene-derived serpentine had a comparable FeO content(6.26±0.58 wt.%)to that of primary orthopyroxene(6.24 wt.%).In experiments on peridotite,olivine was replaced by serpentine and iron oxide.However,pyroxene transformed solely to serpentine.After 20 days,olivine-derived serpentine had a FeO content of 8.18±1.56 wt.%,which was significantly higher than that of serpentine produced in olivine-only experiments.By contrast,serpentine after orthopyroxene had a slightly higher FeO content(6.53±1.01 wt.%)than primary orthopyroxene.Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral.After 120 days,the FeO content of olivine-derived serpentine decreased significantly(5.71±0.35 wt.%),whereas the FeO content of orthopyroxene-derived serpentine increased(6.85±0.63 wt.%)over the same period.This suggests that iron oxide preferentially formed after olivine serpentinization.Pyroxene in peridotite gained some Fe from olivine during the serpentinization process,which may have led to a decrease in iron oxide production.The correlation between FeO content and SiO_2 or AI_2 O_3 content in olivine-and orthopyroxene-derived serpentine indicates that aluminum and silica greatly control the production of iron oxide.Based on our results and data from natural serpentinites reported by other workers,we propose that aluminum may be more influential at the early stages of peridotite serpentinization when the production of iron oxide is very low,whereas silica may have a greater control on iron oxide production during the late stages instead.  相似文献   

14.
The phonon density of states (DOS) in iron has been measured in situ by nuclear resonance inelastic X-ray scattering (NRIXS) at high pressures and high temperatures in a resistively heated diamond anvil cell. The DOS data provide a variety of thermodynamic and elastic parameters essential for characterizing iron at depth in the Earth interior, such as average sound velocity, Debye temperature, atomic mean square displacement, average kinetic energy, vibrational entropy and specific heat. The NRIXS data were collected at 6, 20, and 29 GPa and at temperatures up to 920 K. Temperatures were directly determined from the measured spectra by the ratio of intensities of the phonon creation/annihilation side bands that are determined only by the Boltzmann factor. The change of the DOS caused by the structural transition from -Fe to -Fe is small and not resolvable within the experimental precision. However, the phonon energies in -Fe are clearly shifted to lower values with respect to - and -Fe. The temperature dependence of derived thermodynamic parameters is presented and compared with those obtained by Debyes model. The Debye temperatures that best describe the data decrease slightly with increasing temperature.  相似文献   

15.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

16.
Data on the mechanisms of mantle phase transformations have come primarily from studies of analogue systems reacted experimentally at low pressures. In order to study transformation mechanisms in Mg2SiO4 at mantle pressures, forsterite () has been reacted in the stability field of -phase, at 15 GPa and temperatures up to 900° C, using a multianvil split-sphere apparatus. Transmission electron microscope studies of samples reacted for times ranging from 0.25–5.0 h show that forsterite transforms to -phase by an incoherent nucleation and growth mechanism involving nucleation on olivine grain boundaries. This mechanism and the resultant microstructures are very similar to those observed at much lower pressures in analogue systems (Mg2GeO4 and Ni2SiO4) as the result of the olivine to spinel () transformation. Metastable spinel () also forms from Mg2SiO4 olivine at 15 GPa, in addition to -phase, by the incoherent nucleation and growth mechanism. With time, the spinel progressively transforms to the stable -phase. After 1 h, spinels exhibit a highly striated microstructure along {110} and electron diffraction patterns show streaking parallel to [110] which indicates a high degree of structural disorder. High resolution imaging shows that the streaking results from thin lamellae of -phase intergrown with the spinel. The two phases have the orientation relationship [001]//[001] and [010]//[110] so that the quasi cubic-close-packed oxygen sublattices are continuous between both phases. These microstructures are similar to those observed in shocked meteorites and show that spinel transforms to -phase by a martensitic (shear) mechanism. There is also evidence that the mechanism changes to one involving diffusion-controlled growth at conditions close to equilibrium.  相似文献   

17.
The ultrabasic–basic magmatic evolution of the lower mantle material includes important physicochemical phenomena, such as the stishovite paradox and the genesis of superdeep diamonds. Stishovite SiO2 and periclase–wüstite solid solutions, (MgO · FeO)ss, associate paradoxically in primary inclusions of superdeep lower mantle diamonds. Under the conditions of the Earth’s crust and upper mantle, such oxide assemblages are chemically impossible (forbidden), because the oxides MgO and FeO and SiO2 react to produce intermediate silicate compounds, enstatite and ferrosilite. Experimental and physicochemical investigations of melting phase relations in the MgO–FeO–SiO2–CaSiO3 system at 24 GPa revealed a peritectic mechanism of the stishovite paradox, (Mg, Fe)SiO3 (bridgmanite) + L = SiO2 + (Mg, Fe)O during the ultrabasic–basic magmatic evolution of the primitive oxide–silicate lower mantle material. Experiments at 26 GPa with oxide–silicate–carbonate–carbon melts, parental for diamonds and primary inclusions in them, demonstrated the equilibrium formation of superdeep diamonds in association with ultrabasic, (Mg, Fe)SiO3 (bridgmanite) + (MgO · FeO)ss (ferropericlase), and basic minerals, (FeO · MgO)ss (magnesiowüstite) + SiO2 (stishovite). This leads to the conclusion that a peritectic mechanism, similar to that responsible for the stishovite paradox in the pristine lower mantle material, operates also in the parental media of superdeep diamonds. Thus, this mechanism promotes both the ultrabasic–basic evolution of primitive oxide–silicate magmas in the lower mantle and oxide–silicate–carbonate melts parental for superdeep diamonds and their paradoxical primary inclusions.  相似文献   

18.
The high-pressure behaviour of a synthetic P21/c ferrian magnesian spodumene, M2 (Li0.85Mg0.09Fe2+ 0.06)M1(Fe3+ 0.85Mg0.15)Si2O6, has been investigated using in situ single-crystal X-ray diffraction and Raman spectroscopy. No phase transition has been observed within the pressure range investigated. The isothermal equation of state up to 7 GPa was determined. V0, KT0 and K, simultaneously refined with a Murnaghan equation of state, are: V0= 415.66(7) Å3, KT0=83(1) GPa and K=9.6(6). The magnitudes of the principal unit-strain coefficients were calculated and their ratios 1:2:3=1.00:1.85:2.81 at P=6.83 GPa indicate a very strong anisotropy. Monitoring of the intensity of b-type reflections (h+k= 2n+1) confirms that from room conditions up to 7 GPa the primitive lattice is maintained. Raman spectra have been collected up to 7.4 GPa. No change in the number of observed vibrational modes occurs in the pressure range investigated. At high frequency, the Raman doublet relative to the Si–O–Si vibrations of the two distinct tetrahedral chains is a broad band at room pressure, however, the frequency difference between the two modes increases with increasing pressure.Operating system: Windows NT  相似文献   

19.
The compressibility of -Mns (alabandite) was determined by x-ray analysis using a Mao-Bell type diamond anvil cell. The zero pressure bulk modulus (K0) is 74±2 GPa with the pressure derivative of the bulk modulus (Ko) fixed at four. Allowing (Ko) to vary yielded a statistically better fit with K0 = 88±6 GPa and k0 = 2.2±0.6. Our data combined with the data of McCammon (1991) gave Ko = 73±1 GPa with ko fixed at four. A fit with ko allowed to vary yielded ko = 75±2 GPa and ko = 3.7±0.4. Alabandite transformed from the B1 structure (NaCl-type) to an unknown high-pressure phase at 26 GPa. The high-pressure phase has lower than hexagonal symmetry and it is stable to at least 46±4 GPa.Also affiliated with the James Franck Institute, University of Chicago  相似文献   

20.
We have carried out an in situ synchrotron X-ray diffraction study on iron and an iron-silicon alloy Fe0.91Si0.09 at simultaneously high pressure and temperature. Unit-cell volumes, measured up to 8.9 GPa and 773 K on the bcc phases of iron and Fe0.91Si0.09, are analyzed using the Birch-Murnaghan equation of state and thermal pressure approach of Anderson. Equation of state parameters on iron are found to be in agreement with results of previous studies. For both iron and Fe0.91Si0.09, thermal pressures show strong dependence on volume; the (∂KT/∂T)V values are considerably larger than those previously reported for other solids. The present results, in combination with our previous results on ɛ-FeSi, suggest a small dependency of the room-temperature bulk modulus upon the silicon content, less than 0.3 GPa for 1 wt.% silicon. We also find that substitution of silicon in iron would not appreciably change the thermoelastic properties of iron-rich Fe−Si alloys. If this behavior persists over large pressure and temperature ranges, the relative density contrast between iron and iron-rich Fe−Si alloys at conditions of the outer core of the Earth could be close to that measured at ambient conditions, i.e., 0.6% for 1 wt.% Si. Received: 13 January 1998 / Revised, accepted: 8 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号