首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

2.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

3.
Simplification of a complex system of geochemical variables obtained from the soils of an industrialized area of Bombay is attempted by means of R-mode factor analysis. Prior to factor analysis, discriminant analysis was carried out taking rock and soil chemical data to establish the anthropogenic contribution of metals in soil. Trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) are expressed in terms of three rotated factors. The factors mostly indicate anthropogenic sources of metals such as atmospheric fallout, emission from different industrial chimneys, crushing operations in quarries, and sewage sludges. Major elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, and Fe) are also expressed in terms of three rotated factors indicating natural processes such as chemical weathering, presence of clay minerals, and contribution from sewage sludges and municipal refuse. Summary statistics (mean, standard deviation, skewness, and kurtosis) for the particle size distribution were interpreted as moderate dominance of fine particles. Mineralogical studies revealed the presence of montmorillonite, kaolinite, and illite types of clay minerals. Thus the present study provides information about the metal content entering into the soil and their level, sources, and distribution in the area.  相似文献   

4.
The concentrations of eight dissolved trace metals were measured in the lower Mississippi River seven times at various flow stages during a two-year interval. Using trace metal sampling and analysis techniques demonstrated to be reliable, these metals are shown to occur at levels lower than frequently reported. There are systematic relations between the metals and discharge which can serve as predictors of metal variability. Anthropogenic contributions cannot be assessed accurately from these data but do not appear to cause the concentrations of most of these metals to be significantly higher than observed in less disturbed systems, with the possible exception of Ni and Cd.  相似文献   

5.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

6.
This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections  相似文献   

7.
This paper presents the concentrations of trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) in macroalgae from five areas. Significant differences were noticed in trace metal concentration in macroalgae, and a large range of variations between the minimum and maximum concentrations of trace metals was found. Trace metals detected in macroalgae generally occur in adsorbed and absorbed forms. Environmental and biological factors jointly control the trace metal compositions and concentrations in macroalgae. The complexity and variation of these factors cause significant differences in trace metal concentrations in macroalgae. Environmental factors play a more important role in controlling trace metal compositions and concentrations when external available trace metals are beyond requirement for algal metabolism and growth, especially for non-essential trace metals; however, when the external available trace metals just satisfy the needs of algal metabolism and growth, biological factors would play a more important role, especially for essential trace metals. Interactions among the trace metals can also influence their compositions and concentrations in macroalgae. It is alsodiscussed how to make macroalgae as an excellent biomonitor for trace metals.  相似文献   

8.
We present data on major ions, nutrients and trace metals in an Antarctic stream. The Onyx River is located in Wright Valley (77-32 S; 161-34 E), one of a group of ancient river and glacier-carved landforms that comprise the McMurdo Dry Valleys of Antarctica. The river is more than 30 km long and is the largest of the glacial meltwater streams that characterize this relatively ice-free region near the Ross Sea. The complete absence of rainfall in the region and the usually small contributions of glacially derived tributaries to the main channel make this a comparatively simple system for geochemical investigation. Moreover, the lack of human impacts, past or present, provides an increasingly rare window onto a pristine aquatic system.For all major ions and silica, we observe increasing concentrations with distance from Lake Brownworth down to the recording weir near Lake Vanda. Chemical weathering rates are unexpectedly high and may be related to the rapid dissolution of ancient carbonate deposits and to the severe physical weathering associated with the harsh Antarctic winter. Of the nutrients, nitrate and dissolved reactive phosphate appear to have quite different sources. Nitrate is enriched in waters near the Lower Wright Glacier and may ultimately be derived from stratospheric sources; while phosphate is likely to be the product of chemical weathering of valley rocks and soils. We confirm the work of earlier investigations regarding the importance of the Boulder Pavement as a nutrient sink.Dissolved Mn, Fe, Ni, Cu, and Cd are present at nanomolar levels and, in all cases, the concentrations of these metals are lower than in average world river water. We hypothesize that metal uptake and exchange with particulate phases along the course of the river may serve as a buffer for the dissolved load. Concurrent study of these three solute classes points out significant differences in the mechanisms and sites of their removal from the Onyx River.  相似文献   

9.
This study highlights the hydro-climatic features of the five wet periods contributing in different percentages to the annual rainfall total over major river basins in India. Spatial and temporal variations in the parameters such as starting date, duration and rainfall intensity of these wet periods throughout India have been discussed using daily gridded rainfall data for the period 1951–2007. An attempt is also made here, to assess the impact of global SSTs on the start and duration of the wet periods in Indian river basins.  相似文献   

10.
Soil erosion by water is ubiquitous, exhibits spatio-temporal variability, and is fundamental to determining sediment yield which is key to proper watershed management. In this study, we propose a relationship between the curve number and sediment yield index (SYI) using cubic splines. Using field data from four watersheds, the relation between observed and computed SYI is found to have a coefficient of determination (R2) value from 0.63 to 0.88 suggesting that such a relation can be used to determine SYI from the available CN value. It is found that cubic splines perform satisfactorily with Nash-Sutcliff efficiency ranging from 60.18 to 64.01%, absolute prediction error from 1.35 to 5.56%, integral square error from 1.21 to 5.82%, coefficient of correlation from 79.32 to 93.78%, and degree of agreement from 0.87 to 0.99%.  相似文献   

11.
This study examined the dissolved organic matter (DOM) components of cow dung using a combination of fluorescence (excitation–emission matrix, EEM) spectroscopy and parallel factor (PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients (NH4+ and NO3?) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks (Ex/Em = 275/311 nm and Ex/Em = 220/311 nm), which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na, K and Mg were significantly higher than Ca, Fe, Mn, Zn Sr, Cu, Ni and Co. The NH4+ concentrations were substantially higher than NO3?. These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.  相似文献   

12.
Heavy metals distribution in core sediments, different size fractions of bed sediments (>212 urn, 90-212 jam, 63–90 urn, 53–63 urn, < 53 urn), and suspended sediments (>30 urn, 20–30 m, 10–20 urn, 2–10 urn, <2 m) have been discussed. Pb, Zn, and Cr have been accumulating in recent years in the sediments. Si, Al, Fe, Ca, and Mg dominate the bed and suspended sediment composition. Metals show increasing concentrations in finer sediments. Applying multivariate analysis to sediment composition, metals have been grouped into different factors depending upon their source of origin. Chemical fractionation studies on suspended and bed sediments show Fe, Zn, Cu, and Pb are associated with the residual fraction and Mn with the exchangeable fraction.  相似文献   

13.
14.
《Applied Geochemistry》2003,18(11):1723-1731
The mobility and bioavailability of heavy metals depends on the metal retention capacity of soil and also on the geochemical phases with which metals are associated. Laboratory batch experiments were carried out to study the sorption and distribution of Cd, Ni and Pb in 3 soils differing in their physicochemical properties from India: Oxyaquic Haplustalf (SL1), Typic Haplustalf (SL2) and Typic Haplustert (SL3). The heavy metal adsorption was studied by isotherms and the distribution coefficient (KD) for each metal was obtained from the linear regressions of the concentration of metal remaining in equilibrium solution and the amount adsorbed. In general, the sorption capacity for all the metals decreased in the order: SL3>SL2>SL1. Among metals, the sorption capacity in all the soils decreased in the order: Pb>>Ni>Cd. Distribution of sorbed metals at various equilibrating concentrations was studied by sequential extraction. Results showed significant differences in the distribution of metals in these soils. At higher additions (such as 200 μM l−1) most of the metals were extracted in their more mobile fractions, exchangeable and/or inorganic in contrast to their original partitioning in soils, where they were preferentially associated with the less mobile residual fraction. Largest percentages of metals extracted in the exchangeable fraction corresponded to those soil–metal systems with smaller KD values, e.g. Cd, Ni and Pb in SL1 and Cd and Ni in SL2. In neutral and alkaline soils (SL2, pH=7.1, and SL3, pH=8.6) Pb was predominantly extracted from the inorganic fractions and this corresponded to higher KD values for Pb in these soils. The predominance of metals associated with the exchangeable fraction together with low KD values indicates higher mobility of metals retained in the acidic soil (SL1, pH=5.2) compared with the others.  相似文献   

15.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

16.
This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.  相似文献   

17.
18.
Storms from the Arabian Sea are the most significant meteorological feature in western India that brings extreme rainy days together with catastrophic flooding. The present study reports two such palaeo-storm horizons at 1.16 m and 3.2 m above the present day water level in the Narmada channel, 56 km inland based on sedimentology and foraminiferal records. Both the horizons show similar sediment facies and foraminiferal assemblage. The present findings instigate to look for such new sites and build palaeo-storm records for western India.  相似文献   

19.
The Narmada-Son Lineament (NSL) is one of the most prominent geomorphic features in Central India, which, divides the Indian Peninsula into two parts, northern and southern India. The present study carried near the Shahdol-Katni area of Narmada-Son lineament situated in complex transition zone, encompasses with seismically active, robust changes of gravity-magnetic field, undulating sub-surface topography, existence of hot springs and complex geological setting, which, cause the resettlement of inner dynamic progression. The area covers a range of diverse formations viz. alluvial, Deccan traps, Gondwana, Vindhyan and Mahakoshal groups with different ages. Geologically the area is divided into two parts, Vindhyan and Gondwana. The Vindhyan are exposed in the northern part and Gondwana are exposed in the southern part. It can be inferred that the Mahakoshal rocks are non-magnetic and reasonably higher density rocks which are exposed and intruded in between the Vindhyan and Gondwana rocks during the crustal resetting processes, which, may cause changes in magnetic field in the central part near Tala-Barhi area. Based on magnetic data, the area can also be divided into two parts, the northern part containing higher magnetic values (upto 900 nTesla) and the southern part with the values upto -1000 nTesla. The resettlement process may cause the separation of Vindhyan and Gondwana rocks because of the two existing active faults viz. Son Narmada North Fault (SNNF) and Son Narmada South Fault (SNSF). To know the geological setting of the Narmada Son Lineament, the knowledge of basement depth study plays a major role for understanding the inner mechanism of structural scenery of the ground sub-surface. There are number of studies carried out in and around the study area, but present technique plays an important role with sufficient evidences to validate the structural setting carried by the earlier geoscientists. Werner and Euler deconvolution techniques have been jointly carried out over the study area on the available magnetic dataset for basement depth estimation. As per study, the basement depth varies from 4 km to 5 km in the central part compared to both the split ends of the profiles, which, convincingly correlate the consequences carried by earlier studies. As the magnetic method can provide a non-unique solution, it is always recommended for integrated approach for better understanding and substantiation.  相似文献   

20.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号