首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
We consider the distortion in the cosmic microwave background (CMB) resulting from galactic winds at high redshift. Winds outflowing from galaxies have been hypothesized to be possible sources of metals in the intergalactic medium, which is known to have been enriched to 10−2.5 Z at z ∼3. We model these winds as functions of mass of the parent galaxy and redshift, assuming that they activate at a common initial redshift, z in, and calculate the mean y -distortion and the angular power spectrum of the distortion in the CMB. We find that the thermal Sunyaev–Zel'dovich (SZ) effect resulting from the winds is consistent with previous estimates. The distortion arising from the kinetic SZ (kSZ) effect is, however, found to be more important than the thermal SZ (tSZ) effect. We find that the distortion resulting from galactic winds is an important contribution to the power spectrum of distortion at very small angular scales ( l ∼104). We also find that the power spectrum resulting from clustering dominates the Poisson power spectrum for l ≤(4–5)×105. We show explicitly how the combined power spectrum from wind dominates over that of clusters at 217 GHz, relevant for PLANCK . We also show how these constraints change when the efficiency of the winds is varied.  相似文献   

14.
Using semi-analytic models of galaxy formation, we investigate galaxy properties such as the Tully–Fisher relation, the B - and K -band LFs, cold gas contents, sizes, metallicities and colours, and compare our results with observations of local galaxies. We investigate several different recipes for star formation and supernova feedback, including choices that are similar to the treatment by Kauffmann, White & Guiderdoni and Cole et al., as well as some new recipes. We obtain good agreement with all of the key local observations mentioned above. In particular, in our best models, we simultaneously produce good agreement with both the observed B - and K -band LFs and the I -band Tully–Fisher relation. Improved cooling and supernova feedback modelling, inclusion of dust extinction and an improved Press–Schechter model all contribute to this success. We present results for several variants of the CDM family of cosmologies, and find that models with values of Ω0≃0.3–0.5 give the best agreement with observations.  相似文献   

15.
16.
We explore several physical effects on the power spectrum of the Lyα forest transmitted flux. The effects we investigate here are not usually part of hydrodynamic simulations and so need to be estimated separately. The most important effect is that of high column density absorbers with damping wings, which add power on large scales. We compute their effect using the observational constraints on their abundance as a function of column density. Ignoring their effect leads to an underestimation of the slope of the linear theory power spectrum. The second effect we investigate is that of fluctuations in the ionizing radiation field. For this purpose we use a very large high-resolution N -body simulation, which allows us to simulate both the fluctuations in the ionizing radiation and the small-scale Lyα forest within the same simulation. We find an enhancement of power on large scales for quasars and a suppression for galaxies. The strength of the effect rapidly increases with increasing redshift, allowing it to be uniquely identified in cases where it is significant. We develop templates that can be used to search for this effect as a function of quasar lifetime, quasar luminosity function and attenuation length. Finally, we explore the effects of galactic winds using hydrodynamic simulations. We find the wind effects on the Lyα forest power spectrum to be degenerate with parameters related to the temperature of the gas that are already marginalized over in cosmological fits. While more work is needed to conclusively exclude all possible systematic errors, our results suggest that, in the context of data analysis procedures, where parameters of the Lyα forest model are properly marginalized over, the flux power spectrum is a reliable tracer of cosmological information.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号