首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

2.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

3.
A detailed study of the evolution and cooling process of post-flare loops is presented for a large X9.2 solar flare of 2 November 1992 by using H images obtained with Domeless Solar Telescope at Hida Observatory and soft X-ray images of Yohkoh Soft X-ray Telescope (SXT). The detailed analysis with a new method allows us to determine more precise values of the cooling times from 107 K to 104 K plasma in the post-flare loops than in previous works. The subtraction of sequential images shows that soft X-ray dimming regions are well correlated to the H brightening loop structure. The cooling times between 107 K and 104 K are defined as the time difference between the start of soft X-ray intensity decrease and the end of H intensity increase at a selected point, where the causal relation between H brightening and soft X-ray dimming loops is confirmed. The obtained cooling times change with time; about 10 min at the initial stage and about 40 min at the later stage. The combined conductive and radiative cooling times are also calculated by using the temperature and density obtained from SXT data. Calculated cooling times are close to observed cooling times at the beginning of the flare and longer in the later stage.  相似文献   

4.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

5.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

6.
Shakhovskaya  A.N.  Abramenko  V.I.  Yurchyshyn  V.B. 《Solar physics》2002,207(2):369-379
We report on a prominence eruption as seen in H with the Crimean Lyot coronagraph, the global H network, and coronal images from the LASCO C2 instrument on board SOHO. We observed an H eruption at the northwest solar limb between 07:38:50 UT and 07:58:29 UT on 11 August 2000. The eruption originated in a quiet-Sun region and was not associated with an H filament. No flare was associated with the eruption, which may indicate that, in this case, a flux rope was formed prior to the eruption of the magnetic field. The H images and an H Dopplergram show a helical structure present in the erupted magnetic field. We suggest that the driving mechanism of the eruption may be magnetic flux emergence or magnetic flux injection. The limb H observations provide missing data on CME speed and acceleration in the lower corona. Our data show that the prominence accelerated impulsively at 5.5 km s–2 and reached a speed slightly greater than 800 km s–1 in a narrow region (h<0.14 R ) above the solar surface. The observations presented here also imply that, based only on a CME's speed and acceleration, it cannot be determined whether a CME is the result of a flare or an eruptive prominence.  相似文献   

7.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

8.
M. Dizer 《Solar physics》1969,10(2):416-428
We report measurements made on the brightness in H of all parts of the flare photographed through a birefringent filter centered on H, using a scanning isodensitometer. From obtained isophotes of the flares we derived some information on the morphological changes in the flare and estimated the total energy in H of the flare.  相似文献   

9.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

10.
Zhang  Jun  Wang  Jingxiu 《Solar physics》2000,196(2):377-393
We analyzed simultaneous EUV images from the Transition Region And Coronal Explorer (TRACE) and H and H filtergrams from Huairou Solar Observing Station (HSOS). In active region NOAA 8307, an H C5.5 flare occurred near 06:10 UT on 23 August 1998. In this paper, we concentrated on loop–loop interaction, as well as their relationship to the C5.5 flare. We find that while opposite polarity magnetic fields cancelled each other, H bright points appeared, and then the flare occurred. Looking at EUV images, we noticed that a TRACE flare, associated with the C5.5 flare in H and H filtergrams, first appeared as patch-shaped structures, then the flare patches expanded to form bright loops. We used a new numerical technique to extrapolate the chromospheric and coronal magnetic field. Magnetic field loops, which linked flare ribbons, were found. It was suggested that loop interaction in the active region was the cause of the TRACE and H flare; the magnetic topological structures were clearly demonstrated and the TRACE flare was probably due to the interaction among energetic low-lying and other longer (higher) magnetic loops. Each primary flare kernel, seen from H, H filtergrams, and EUV images, was located near the footpoints of several interacting loops.  相似文献   

11.
We observed the large post-flare loop system, which developed after the X 3.9 flare of 25 June 1992 at 2011 UT, in H with the Multichannel Subtractive Double Pass Spectrograph at Pic-du-Midi and in X-rays with the it Yohkoh/SXT instrument. Following the long-term development of cool and hot plasmas, we have determined the emission measure of the cool plasma and, for the first time, the temporal evolution of the hot-loop emission measure and temperature during the entire gradual phase. Thus, it was possible to infer the temporal variation of electron densities, leading to estimates of cooling times. A gradual decrease of the hot-loop emission measure was observed, from 4 × 1030 cm–5 at 2300 UT on 25 June 1992 to 3 × 1028 cm–5 at 1310 UT on 26 June 1992. During the same period, the temperature decreased only slowly from 7.2 to 6.0 × 106 K. Using recent results of NLTE modeling of prominence-like plasmas, we also derive the emission measure of cool H loops and discuss their temperature and ionisation degree. During two hours of H observations (11–13 hours after the flare) the averaged emission measure does not show any significant change, though the amount of visible cool material decreases and the volume of the loops increases. The emission measure in H, after correction for the Doppler-brightening effect, is slightly lower than in soft X-rays. Since the hot plasma seems to be more spatially extended, we arrive at electron densities in the range n infe supho n infe supcool 2 × 1010 cm–3 at the time of the H observations.These results are consistent with the post-flare loop model proposed by Forbes, Malherbe, and Priest (1989). The observed slow decrease of the emission measure could be due to an increase of the volume of the loops and a gradual decrease of the chromospheric ablation driven by the reconnection, which seems to remain effective continuously for more than 16 hours. The cooling time for hot loops to cool down to 104 K and to appear in H would be only a few minutes at the beginning of the gradual phase but could be as long as 2 hours at the end, several hours later.  相似文献   

12.
We present H monochromatic and spectroscopic observations of the sudden disappearance of a dark filament located near the center of the solar disk on October 26, 1989. The event was not associated with the flare activity. The dark filament first disintegrated into two loop-like components, and then each component successively showed ascending motion with a velocity greater than 30 km s–1. Comparison of the H pictures taken before and after the start of this event suggests that the dark filament was originally composed of two magnetic flux loops.  相似文献   

13.
The time variation of the gravitational constantG is discussed in the light of the gravity modified form of quantum electrodynamics. From the experimental upper limit |a/| < 5 × 10–15 yr–1 on the time variation of the electromagnetic fine structure constant one finds |/G| < 5 × 10–13 yr–1.  相似文献   

14.
A post flare loop system was observed on the west limb at the total solar eclipse of February 16, 1980 in Kenya. Analyzing the monochromatic images and the flash spectra, we obtained the following results: (1) the lower part of the post flare loop system is characterized mainly by distinct cool loops of H and Fe x 6374. Fe x 6374 emitting plasma (T e = 1.0 × 106 K) is highly concentrated in the loops. The 6374 loops are broader in diameter and located very close to but a little higher than the corresponding H loops. The electron densities of the dense part in H and Fe x 6374 loops are 1011 cm-3 and 6 × 109cm-3, respectively; (2) the Ca xv emitting region (3.5 × 106 K) is confined to the upper part of the post flare loops. The electron density of this hot region is estimated as 8 × 109 cm-3 from the Ca xv line intensity ratio, I(5694)I(5445). These observational results led us to construct an empirical model of the post flare loop system which is consistent with the reconnection model of Kopp and Pneuman (1976).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 267.  相似文献   

15.
You  Jianqi  Hiei  Eijiro  Li  Hui 《Solar physics》2003,217(2):235-245
After carefully comparing the white-light (5600±00 Å) and the slit-jaw H images (0.5 Å  passband) of the 2N/X20 white-light flare of 16 August 1989, we found that the H counterpart identification of the bright kernels in continuum by Hiei, Nakagomi, and Takuma (1992) was incorrect. Now we come to the conclusion that none of the two white-light kernels has a corresponding bright H area. Moreover, the loop shapes in white-light are also different from those in H. H loops rose more rapidly than white-light loops. However, their height–time variations on the whole are similar. This indicates that the continuum and chromospheric emissions of the flare presumably come from different plasmas, but may be modulated by some mutual factors, such as large-scale magnetic fields. Analysis of the Hei 10830 Å spectra taken simultaneously with the slit-jaw H images shows that the line-center intensity of Hei 10830 Å doesn't have a good correlation with the intensity of nearby continuum, which supports the above conclusions. In addition, the electron density at the white-light loop top estimated from the continuum around 5600 Å  and 10830 Å  is as high as 1012–1013 cm–3.  相似文献   

16.
In the present paper, H-evolutive curves of chromospheric events are compared with flux evolutive curves of X-ray events observed at the same time in different spectral regions. A correspondence between the emissions E(I H/I chr)'s at higher and higher H-intensity levels, and the X-ray fluxes F()'s in harder and harder -ranges is shown. Further, the present observations seem to indicate the existence of a single triggering mechanism during the flash-phase of a flare. It is also shown that these results may be in agreement with Brown's model for chromospheric flares.  相似文献   

17.
Choudhary  Debi Prasad  Gary  G. Allen 《Solar physics》1999,188(2):345-364
The high-resolution H images observed during the decay phase of a long-duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long-duration flare was observed in the region of low magnetic shear at the photosphere. The H loops activity started soon after the maximum phase of the flare. There were a few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45° to the east-west axis. Gradually, an increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H loops. The height of the H loops were derived by comparing them with the computed field lines. From the temporal evolution of the H loop activity, we derive the negative rate of appearance of H features as a function of height. It is found that the field lines oriented along one of the neutral lines were sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long-duration flare.  相似文献   

18.
A flare event occurred which involved the disappearance of a filament near central meridian on 29 August 1973. The event was well observed in X-rays with the AS & E telescope on Skylab and in H at BBSO. It was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H brightenings at the footpoints of the brightest X-ray loops. These magnetic structures and the preflare history of the region are then used to argue that the event involved a reconnection of magnetic field lines rather than a brightening in place of pre-existing loops. The simultaneity of the H brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation. These observations are compared to other studies of filament disappearances. The preflare structures and the alignment of the early X-ray flare loops with the H filament are consistent with the schematic picture of a filament presented first by Canfield et al. (1974).  相似文献   

19.
During a coordinated SMY program, the consecutive formation of two new active centers merging together within AR 2646 was observed from 28 August, to 5 September, 1980. The two preceding spots compressed an inverse polarity spot on 1 September 1980, causing recurrent ejecta of matter with time intervals around 10 min. The observations of the MSDP spectrograph operating in H at the Meudon Solar tower and of the UVSP spectrometer on SMM in the Civ 1548 Å line show that cold and hot material had the same projection, although the upward Civ velocity structure was more extended than the H one. We present evidence that observed contrasts of the H absorbing structure can be interpreted in terms of a dynamic cloud model overlying the chromosphere. H matter follows a magnetic channel with upward velocity around 20–30 km s–1 in the first phase of the event and with downward velocity ( - 40 km s–1) in the second phase. The stored energy is not sufficient to trigger a flare, nor even to propulse matter along the full length of an arch, because of the periodic reorganisation of the magnetic field.  相似文献   

20.
Spectral and photoelectric (ubvy, H, H) observations of the Herbig Ae/Be star HD 259431 are reported. It is found that as its brightness fades, this star becomes bluer in the Paschen continuum and the intensity and equivalent width of the hydrogen emission lines increase. The spectral observations reveal significant variations in the intensity of the Mg II 4481 Å photospheric absorption line. A rise and fall in the luminosity by 0m.04 within a period of 5-7 minutes was recorded. Radical variations in the H lineshape ("double" "P Cyg") and flare activity are not only observed in this star, but also in a number of HAEBE stars. It is suggested that flare activity may initiate a change in the velocity gradient at the base of the wind and, thereby, induce "double P Cyg" or "P Cyg single" transitions. The nonradial pulsations of this star are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号