首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Star evolution at constant mass is typically considered as well defined, given initial mass and composition. However, in the stellar mass range of 8–10M , large uncertainties — as to the treatment of convection and hydrodynamical burning, or that of electron captures — exist. They are the key to the issue whether electron captures induce star collapse or the star is disrupted by a deflagration. The final fate of the star strongly depends, therefore, on the adopted treatment for those problems. This paper is aimed at analyzing such a dependence.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

2.
The final dynamical collapse of oxygen cores of 103 and 104 M which undergo the pair formation instability is computed. These cores are found to suffer complete collapse, presumably to form black holes, in contrast to cores of 100M which have previously been found to explode completely, leaving no remnant. These calculations represent a first attempt to ascertain the outcome of evolution over several decades of mass previously unexplored. The outcome may have some relevance to models of X-ray sources in globular clusters.  相似文献   

3.
D. W. Kurtz 《Solar physics》2008,251(1-2):21-30
Stellar astronomers look on in envy at the wealth of data, the incredible spatial resolution, and the maturity of the theoretical understanding of the Sun. Yet the Sun is but one star, so stellar astronomy is of great interest to solar astronomers for its range of different conditions under which to test theoretical understanding gained from the study of the Sun. The rapidly oscillating peculiar A stars are of particular interest to solar astronomers. They have strong, global, dipolar magnetic fields with strengths in the range 1?–?25?kG, and they pulsate in high-overtone p modes similar to those in the Sun; thus they offer a unique opportunity to study the interaction of pulsation, convection, and strong magnetic fields, as is now done in the local helioseismology of sunspots. Some of them even pulsate in modes with frequencies above the acoustic cutoff frequency, in analogy with the highest frequency solar modes, but with mode lifetimes up to decades in the roAp stars, very unlike the short mode lifetimes of the Sun. They offer the most extreme cases of atomic diffusion, a small, but important ingredient of the standard solar model with wide application in stellar astrophysics. They are compositionally stratified and are observed and modelled as a function of atmospheric depth and thus can inform plans to expand helioseismic observations to have atmospheric depth resolution. Study of this unique class of pulsating stars follows the advanced state of studies of the Sun and offers more extreme conditions for the understanding of physics shared with the Sun.  相似文献   

4.
Evolutionary sequences are computed from the main sequence to central helium exhaustion for a 15M star, with an initial composition ofX=0.70,Y=0.27,Z=0.03. Parallel sequences are computed to investigate the effects of different mass loss rates on the evolution of the star. These rates are chosen to reflect the physical causes of the mass loss, and occur at all phases of evolution. One sequence without, and one with, mass loss are recomputed, allowing for semiconvection and full convection in intermediate mass zones, using the Schwarzschild and Härm criterion for convective neutrality.Low to moderate rates of mass loss in the early evolutionary phases shift the evolution to lower luminosities and effective temperatures, but do not radically alter the form of evolution. However, the resulting evolutionary sequences can be up to 25% undermassive for their luminosity as they enter the red giant branch (RGB). Most sequences evolve through a subsequent stable blue phase (the blue loop), which is shifted to lower luminosities and effective temperatures by the previous mass loss and is also widened. This blue loop is suppressed if approximately 10% of the stellar mass is lost in the RGB. Mass loss delays the evolution of the central region of the star relative to that of the outer region, so that central helium ignition and exhaustion are displaced to later points on the evolutionary tracks. Mass loss also reduces the size of the helium core, although its mass fraction is larger.If semiconvective and intermediate fully convective zones are included, then in a sequence without mass loss these zones greatly alter the chemical profile of the model. The sequence evolves at a higher luminosity, with a stable blue supergiant phase occurring prior to the RGB. Central helium exhaustion occurs during the ascent of the RGB. However, if mass loss is included, the extent of these zones is drastically reduced, and the evolutionary pattern is similar to that without such zones. No blue loop is found.Observations indicate that the blue supergiant region is wider and bluer than predicted by previous evolutionary calculations. The present results show that mass loss widens and reddens this phase. Hence, the inclusion of other factors will be necessary to reconcile theory and observations.  相似文献   

5.
We collected infrared and radio data on 110 OH/IR stars, 65 S stars and 184 C-rich stars from the literature. We analyzed their spectral energy distributions, bolometric magnitudes, infrared colors and mass-loss rates. Our study confirms that OH/IR stars and C-rich stars reach similarly high mass-loss rates at similar luminosities, supporting the idea that mass-loss rates are determined by internal stellar activities such as pulsation rather than the properties of their envelopes. The mass-loss rates of OH/IR stars and C-rich stars are strongly correlated with the color indices K-[A], K-[C], K-[D] and K-[E], and the two populations can be described with one formula. Our study also reveals that only those stars with color indices K-[A]<4 or K-[C]<5 have SEDs that peak in the near-infrared waveband.  相似文献   

6.
7.
Spectroscopic analysis of Population II stars indicates that oxygen and other -elements appear to be overabundant with respect to iron (Sneden, 1985; Grattonet al., 1986; Gustafsson, 1987; Gratton, 1987; Gratton and Ortolani, 1989). By use of the Los Alamos Tapes Library, new opacities for Population II stars have been computed, including oxygen, neon, magnesium, and calcium enhanced by a factor five with respect to the solar ratios mixture. On this basis, a grid of evolutionary sequences of He-burning models has been computed for low-mass stars covering the He-burning phase from the Zero-Age Horizontal Branch (ZAHB) up to the onset of thermal pulses in an advanced phase of He-shell burning, for the following assumption on the stellar parameters: helium abundance in the envelopeY=0.20 and 0.25; intial chemical composition [Fe/H]=–2.3, and [Fe/H]=–1.3; initial helium-core massM c=0.48 and 0.50 and total mass values fromM=0.56 up toM=0.76M . This choice of parameters was suggested by the opportunity of covering the range of values expected in galactic globular cluster HB stars, when an original abundance of heliumY=0.23 is assumed, as adopted throughout the recent literature. At this conference we present just a short overview of the main results while the large set of computed tracks and a detailed discussion on the topic will be presented elsewhere (Bencivenniet al., 1989).  相似文献   

8.
9.
In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.  相似文献   

10.
T Tauri stars are young stars usually surrounded by dusty disks similar to the one from which we believe our own Solar System formed. Most T Tauri stars exhibit a broad emission or absorption band between 7.5 and 13.5µm which is attributed to silicate grains in the circumstellar environment. We imaged three spatially resolved T Tauri binaries through a set of broadband filters which include the spectral region occupied by the silicate band. Two of these objects (T Tauri and Haro 6–10) are infrared companion systems in which one component is optically much fainter but contributes strongly in the infrared. Both infrared companions exhibit a deep silicate absorption which is not present in their primaries, indicating that they suffer very strong local extinction which may be due to an edge-on circumstellar disk or to a dense shell. We also took low resolution spectra of the silicate feature of two unresolved T Tauris to look for narrow features in the silicate band which would indicate the presence of specific minerals such as olivine. We observed GK Tau, for which Cohen and Witteborn (1985) reported a narrow emission feature at 9.7µm, but do not find evidence for this feature, and conclude that it is either time-dependent or an artifact of absorption by telluric ozone.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

11.
High linear polarization (up to 5–8%) discovered by our group in the deep minima of isolated AE-Herbig stars is discussed in the framework of the model of zodiacal light produced by scattering matter in a circumstellar dust envelope (probably in protoplanetary discs). The numerical simulations of polarizational and colourimetrical properties of the scattered light based on the Mie theory permit to obtain from the observations some important parameters of circumstellar dust: the size distribution of grains, their rough chemical composition (silicate/graphite), the flatness of the dust envelope.Moreover, the position angle of polarization in deep minima may be used for determination of the symmetry axis projection of circumstellar disc on the sky relative to the direction of local interstellar magnetic field. The latest is important in order to understand the role of the magnetic field at the initial phase of gravitational collapse of protostellar clouds.Finally, the component of linear polarization which is due to the alignment of nonspherical circumstellar grains may be separate from the observed polarization under certain conditions.Paper presented at the 12th European Regional Astronomical Meetings of the IAU European Astronomers Look to the Future, held 8–11 October, 1990 in Davos, Switzerland.  相似文献   

12.
A model of a first generation intermediate star of 5M , with Z=0 has been considered. The model is at an advanced stage of its evolution and has a double shell burning. It burns helium in the inner shell, and hydrogen, via CNO cycle, in the outer shell. =(log/log) T and T =(log/logT) were computed allowing for the oscillations of the relative mass abundance of the reagents in nuclear reactions. Including =(log/log) T and =(log/logT) of mean molecular weight and the effect of the oscillations of abundances due to nuclear reactions, stability was studied. Contrary to the results of the static calculations, we found that instability due to the excitation mechanism provided by the high temperature sensitivity of energy generation rate propagates up to the surface. Thus the model in question was found to be unstable against radial adiabatic pulsations, in its fundamental mode.  相似文献   

13.
We present the results of speckle interferometric observations of 156 stars possessing global magnetic fields, carried out with the 6-m BTA telescope of the Special Astrophysical Observatory. Virtually all stars were observed between 2010 and 2012. Thirty-four stars were resolved into individual components (31 double and 3 triple), of which 14 binary systems (BD+41○43, HD2887, HD30466, HD36540, HD36955, HD37479, HD61045, HD89069, HD144334, HD164258, HD349321, HD343872, HD184471, HD196691) and 2 triple systems (HD37140, HD338226) were for the first time resolved by the astrometric method.  相似文献   

14.
We have developed a radiative transfer code, cmfgen, which allows us to model the spectra of massive stars and supernovae. Using cmfgen we can derive fundamental parameters such as effective temperatures and surface gravities, derive abundances, and place constraints on stellar wind properties. The last of these is important since all massive stars are losing mass via a stellar wind that is driven from the star by radiation pressure, and this mass loss can substantially influence the spectral appearance and evolution of the star. Recently we have extended cmfgen to allow us to undertake time-dependent radiative transfer calculations of supernovae. Such calculations will be used to place constraints on the supernova progenitor, to place constraints on the supernova explosion and nucleosynthesis, and to derive distances using a physical approach called the “Expanding Photosphere Method”. We describe the assumptions underlying the code and the atomic processes involved. A crucial ingredient in the code is the atomic data. For the modeling we require accurate transition wavelengths, oscillator strengths, photoionization cross-sections, collision strengths, autoionization rates, and charge exchange rates for virtually all species up to, and including, cobalt. Presently, the available atomic data varies substantially in both quantity and quality.  相似文献   

15.
We consider cosmology with the gravitational and cosmological constants generalized as coupling scalars in Einstein’s theory. A general method of solving the field equations is given. We study here the exact solutions for negative pressure models satisfying G=G 0(R/R 0) n .  相似文献   

16.
《Icarus》1986,65(1):1-12
The tidal gravitational field of the Galaxy directed into the galactic plane changes the angular momentum of comets in the Oort cloud. For comet orbits with semimajor axis greater than 2 × 104 AU, the change of angular momentum in one orbit is sufficient to bring comets from the Oort cloud into the visible region, causing the infall of “new” comets. The limiting size orbit is weakly dependent on the angle between the major axis of the comet orbit and the galactic plane. The flux of comets into the inner Solar System caused by the galactic tidal field will be continuous and nearly isotropic. This effect appears to exclude any determination of the trajectories of passing stars by analysis of the angular distribution of new comets. The production of intense comet showers by the tidal field of a solar companion or of an interstellar cloud is considered. We show that the direction of a solar companion cannot be found from the present distribution of observable comets. The frequency of comet showers induced by encounters with interstellar clouds is found to be much lower than that from passing stars, and the tidal fields of interstellar clouds are not strong enough to cause comet showers of sufficient intensity to result in Earth impacts.  相似文献   

17.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

18.
The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory.We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.  相似文献   

19.
The evolution and dynamics of a locally-rotationally-symmetric (LRS) Bianchi type-V space-time cosmological models are discussed with variable gravitational and cosmological “constants” in context of the particle creation. We present the exact solutions of Einstein field equations by using a power-law form of the average scale factor of the metric in the case of the particle creation and in the absence of particle creation. The solution describes the particle and entropy generation in the anisotropic cosmological models. The particle creation rate is uniquely determined by the variation of gravitational and cosmological “constants”. We observe that the variable gravitational constant does not necessarily imply particle creation. In a generic situation, models can be interpolated between different phases of the universe. The dynamical behaviors of the solutions and kinematical parameters of the model are discussed in detail.  相似文献   

20.
In this paper an attempt has been made to determine the effect of Coriolis force on the shapes of Roche equipotential surfaces of rotating stars and stars in binary systems. Equations of Roche equipotential surfaces have been obtained for rotating and binary stars which take into account the effects of Coriolis force besides the centrifugal and gravitational forces. Shapes of Roche equipotentials and values of Roche limits are obtained for different values of angular velocity of rotation for rotating stars and for different values of mass ratios for the binary stars. The obtained results have been compared with the corresponding results in which the effect of Coriolis force has not been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号