首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 T?g C, ranging from -80.5 to 79.6 T?g C yr-1. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 T?g C which 14.2 T?g C was stored in vegetation and 42.4 T?g C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes.  相似文献   

2.
The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen deposition were evaluated as drivers of NPP. Across all three scenarios, rangeland NPP increased by 0.26 % year?1 (7 kg C ha?1 year?1) but increases were not apparent until after 2030 and significant regional variation in NPP was revealed. The Desert Southwest and Southwest assessment regions exhibited declines in NPP of about 7 % by 2100, while the Northern and Southern Great Plains, Interior West and Eastern Prairies all experienced increases over 25 %. Grasslands dominated by warm season (C4 photosynthetic pathway) species showed the greatest response to temperature while cool season (C3 photosynthetic pathway) dominated regions responded most strongly to CO2 enrichment. Modeled NPP responses compared favorably with experimental results from CO2 manipulation experiments and to NPP estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS). Collectively, these results indicate significant and asymmetric changes in NPP for U.S. rangelands may be expected.  相似文献   

3.
Terrestrial carbon fluxes are an important factor in regulating concentrations of atmospheric carbon dioxide (CO2). In this study, we use a coupled climate model with interactive biogeochemistry to benchmark the simulation of net primary productivity (NPP) and its response to elevated atmospheric CO2. Short-term field experiments such as Free-Air Carbon Dioxide Enrichment (FACE) studies have examined this phenomenon but it is difficult to infer trends from only a few years of field data. Here, we employ the University of Victoria's Earth System Climate Model (UVic ESCM) version 2.8 to compare simulated changes in NPP due to an elevated atmospheric CO2 concentration of 550 ppm to observed increases in NPP of 23% ±2% from four temperate forest FACE studies between 1997 and 2002. We further compare two scenarios: elevated CO2 with climate change, and elevated CO2 without climate change, the latter being consistent with FACE methodology. In the climate change scenario global terrestrial and forest-only NPP increased by 24.5% and 27.9%, respectively, while these increases were 21.0% and 17.2%, respectively, in the latitude band most representative of the location of the FACE studies. In the scenario without climate change, terrestrial and forest-only NPP increased instead by 28.3% and 30.6%, respectively, while these increases were 24.3% and 14.4%, respectively, in the FACE latitudes. This suggests that the model may underestimate temperate forest NPP increases when compared to results from temperate forest FACE studies and highlights the need for both increased experimental study of other forest biomes and further model development.  相似文献   

4.
Grassland is one of the most widespread vegetation types worldwide and plays a significant role in regional climate and global carbon cycling. Understanding the sensitivity of Chinese grassland ecosystems to climate change and elevated atmospheric CO2 and the effect of these changes on the grassland ecosystems is a key issue in global carbon cycling. China encompasses vast grassland areas of 354 million ha of 17 major grassland types, according to a national grassland survey. In this study, a process-based terrestrial model the CENTURY model was used to simulate potential changes in net primary productivity (NPP) and soil organic carbon (SOC) of the Leymus chinensis meadow steppe (LCMS) under different scenarios of climatic change and elevated atmospheric CO2. The LCMS sensitivities, its potential responses to climate change, and the change in capacity of carbon stock and sequestration in the future are evaluated. The results showed that the LCMS NPP and SOC are sensitive to climatic change and elevated CO2. In the next 100 years, with doubled CO2 concentration, if temperature increases from 2.7-3.9˚C and precipitation increases by 10% NPP and SOC will increase by 7-21% and 5-6% respectively. However, if temperature increases by 7.5-7.8˚C and precipitation increases by only 10% NPP and SOC would decrease by 24% and 8% respectively. Therefore, changes in the NPP and SOC of the meadow steppe are attributed mainly to the amount of temperature and precipitation change and the atmospheric CO2 concentration in the future.  相似文献   

5.
Modelling studies predicted that climate change will have strong impacts on the coffee crop, although no information on the effective impact of elevated CO2 on this plant exists. Here, we aim at providing a first glimpse on the effect of the combined impact of enhanced [CO2] and high temperature on the leaf mineral content and balance on this important tropical crop. Potted plants from two genotypes of Coffea arabica (cv. Icatu and IPR 108) and one from C. canephora (cv. Conilon Clone 153) were grown under 380 or 700 μL CO2 L?1 air, for 1 year, after which were exposed to an stepwise increase in temperature from 25/20 °C (day/night) up to 42/34 °C, over 8 weeks. Leaf macro???(N, P, K, Ca, Mg, S) and micronutrients (B, Cu, Fe, Mn, Zn) concentrations were analyzed at 25/20 °C (control), 31/25 °C, 37/30 °C and 42/34 °C. At the control temperature, the 700 μL L?1 grown plants showed a moderate dilution effect (between 7 % and 25 %) in CL 153 (for N, Mg, Ca, Fe) and Icatu (for N, K and Fe), but not in IPR 108 (except for Fe) when compared to the 380 μL L?1 plants. For temperatures higher than control most nutrients tended to increase, frequently presenting maximal contents at 42/34 °C (or 37/30 °C), although the relation between [CO2] treatments did not appreciably change. Such increases offset the few dilution effects observed under high growth [CO2] at 25/20 °C. No clear species responses were found considering [CO2] and temperature impacts, although IPR 108 seemed less sensitive to [CO2]. Despite the changes promoted by [CO2] and heat, the large majority of mineral ratios were kept within a range considered adequate, suggesting that this plant can maintain mineral balances in a context of climate changes and global warming.  相似文献   

6.
Using a climate model with a sophisticated land surface scheme, simulations were conducted to explore the impact of increases in leaf-level carbon dioxide (CO2) on evaporation, temperature and other land surface quantities. Fifty-one realizations were run, for each of four Januarys and four Julys for CO2 concentrations at leaf-level of 280, 375, 500, 650, 840 and 1,000 ppmv. Atmospheric CO2 concentration was held constant at 375 ppmv in all experiments. Statistically significant decreases in evaporation and increases in temperature occur in specific regions as leaf-level CO2 is increased from 280 to 375 ppmv. These same areas expand geographically, and the magnitude of the changes increase as leaf-level CO2 is increased further suggesting that changes are caused by the increase in leaf-level CO2 and are not internal model variability. As leaf-level CO2 is increased further, larger areas of the continental surface are affected by increasing amounts and a statistically significant change in precipitation is seen. The increase in leaf-level CO2 from 280 ppmv to 375 ppmv causes statistically significant changes in the evaporation over 12% of continental surfaces in July. This increases to 25% at 500 ppmv, 35% at 650 ppmv, 41% at 840 ppmv and 47% at 1,000 ppmv. This affects temperature and rainfall by similar amounts, generally in coincident regions. An analysis of these results over key regions shows that the probability density functions of the latent heat flux and temperature are affected non-uniformly. There is a shift in the latent heat flux probability density function to lower values, mainly through the reduction in the upper tail of the distribution. The temperature probability density function shifts to higher values, mainly through an increase in the upper tail of the distribution indicating that the impact is focussed on extremes. Given that there are a suite of well evaluated land surface models that include the biogeochemical effects of increasing CO2 we suggest that the inclusion of such a model should be a recommended component of climate models used in future assessment reports by the Intergovernmental Panel on Climate Change.  相似文献   

7.
Much research focuses on how the terrestrial biosphere influences climate through changes in surface albedo (reflectivity), stomatal conductance and leaf area index (LAI). By using a fully-coupled GCM (HadCM3LC), our research objective was to induce an increase in the growth of global vegetation to isolate the effect of increased LAI on atmospheric exchange of heat and moisture. Our Control simulation had a mean global net primary production (NPP) of 56.3 GtCyr?1 which is half that of our scenario value of 115.1 GtCyr?1. LAI and latent energy (Q E) were simulated to increase globally, except in areas around Antarctica. A highly productive biosphere promotes mid-latitude mean surface cooling of ~2.5°C in the summer, and surface warming of ~1.0°C in the winter. The former response is primarily the result of reduced Bowen ratio (i.e. increased production of Q E) in combination with small increases in planetary albedo. Response in winter temperature is likely due to decreased planetary albedo that in turn permits a greater amount of solar radiation to reach the Earth’s surface. Energy balance calculations show that between 75° and 90°N latitude, an additional 2.4 Wm?2 of surface heat must be advected into the region to maintain energy balance, and ultimately causes high northern latitudes to warm by up to 3°C. We postulate that large increases in Q E promoted by increased growth of terrestrial vegetation could contribute to greater surface-to-atmosphere exchange and convection. Our high growth simulation shows that convective rainfall substantially increases across three latitudinal bands relative to Control; in the tropics, across the monsoonal belt, and in mid-latitude temperate regions. Our theoretical research has implications for applied climatology; in the modeling of past “hot-house” climates, in explaining the greening of northern latitudes in modern-day times, and for predicting future changes in surface temperature with continued increases in atmospheric CO2.  相似文献   

8.
Using the regional terrestrial Net Primary Production (NPP) from different observations and models over China, we validated the NPP simulations and explored the relationship between NPP and climate variation at interannual and decadal scales in the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM) during 1981–2000. M-SDGVM shows agreement with the NPP data from 743 sites under the Global Primary Production Data Initiative (GPPDI). The spatial and the zonal averaged NPP of M-SDGVM agree well with ...  相似文献   

9.

The seasonality in cave CO2 levels was studied based on (1) a new data set from the dynamically ventilated Comblain-au-Pont Cave (Dinant Karst Basin, Belgium), (2) archive data from Moravian Karst caves, and (3) published data from caves worldwide. A simplified dynamic model was proposed for testing the effect of all conceivable CO2 fluxes on cave CO2 levels. Considering generally accepted fluxes, i.e., the direct diffusive flux from soils/epikarst, the indirect flux derived from dripwater degassing, and the input/output fluxes linked to cave ventilation, gives the cave CO2 level maxima of 1.9 × 10−2 mol m−3 (i.e., ∼ 440 ppmv), which only slightly exceed external values. This indicates that an additional input CO2 flux is necessary for reaching usual cave CO2 level maxima. The modeling indicates that the additional flux could be a convective advective CO2 flux from soil/epikarst driven by airflow (cave ventilation) and enhanced soil/epikarstic CO2 concentrations. Such flux reaching up to 170 mol s−1 is capable of providing the cave CO2 level maxima up to 3 × 10−2 mol m−3 (70,000 ppmv). This value corresponds to the maxima known from caves worldwide. Based on cave geometry, three types of dynamic caves were distinguished: (1) the caves with the advective CO2 flux from soil/epikarst at downward airflow ventilation mode, (2) the caves with the advective soil/epikarstic flux at upward airflow ventilation mode, and (3) the caves without any soil/epikarstic advective flux. In addition to CO2 seasonality, the model explains both the short-term and seasonal variations in δ13C in cave air CO2.

  相似文献   

10.
Book review     
《Climate Policy》2013,13(4):395-396
In 2007 the US Congress began considering a set of bills to implement a cap-and-trade system to limit the nation's greenhouse gas (GHG) emissions. The MIT Integrated Global System Model (IGSM)—and its economic component, the Emissions Prediction and Policy Analysis (EPPA) model—were used to assess these proposals. In the absence of policy, the EPPA model projects a doubling of US greenhouse gas emissions by 2050. Global emissions, driven by growth in developing countries, are projected to increase even more. Unrestrained, these emissions would lead to an increase in global CO2 concentration from a current level of 380 ppmv to about 550 ppmv by 2050 and to near 900 ppmv by 2100, resulting in a year 2100 global temperature 3.5–4.5°C above the current level. The more ambitious of the Congressional proposals could limit this increase to around 2°C, but only if other nations, including developing countries, also strongly controlled greenhouse gas emissions. With these more aggressive reductions, the economic cost measured in terms of changes in total welfare in the United States could range from 1.5% to almost 2% by the 2040–2050 period, with 2015 CO2-equivalent prices between $30 and $55, rising to between $120 and $210 by 2050. This level of cost would not seriously affect US GDP growth but would imply large-scale changes in its energy system.  相似文献   

11.
It is investigated how abrupt changes in the North Atlantic (NA) thermohaline circulation (THC) affect the terrestrial carbon cycle. The Lund–Potsdam–Jena Dynamic Global Vegetation Model is forced with climate perturbations from glacial freshwater experiments with the ECBILT-CLIO ocean–atmosphere–sea ice model. A reorganisation of the marine carbon cycle is not addressed. Modelled NA THC collapses and recovers after about a millennium in response to prescribed freshwater forcing. The initial cooling of several Kelvin over Eurasia causes a reduction of extant boreal and temperate forests and a decrease in carbon storage in high northern latitudes, whereas improved growing conditions and slower soil decomposition rates lead to enhanced storage in mid-latitudes. The magnitude and evolution of global terrestrial carbon storage in response to abrupt THC changes depends sensitively on the initial climate conditions. These were varied using results from time slice simulations with the Hadley Centre model HadSM3 for different periods over the past 21 kyr. Changes in terrestrial storage vary between −67 and +50 PgC for the range of experiments with different initial conditions. Simulated peak-to-peak differences in atmospheric CO2 are 6 and 13 ppmv for glacial and late Holocene conditions. Simulated changes in δ13C are between 0.15 and 0.25‰. These simulated carbon storage anomalies during a NA THC collapse depend on their magnitude on the CO2 fertilisation feedback mechanism. The CO2 changes simulated for glacial conditions are compatible with available evidence from marine studies and the ice core CO2 record. The latter shows multi-millennial CO2 variations of up to 20 ppmv broadly in parallel with the Antarctic warm events A1 to A4 in the South and cooling in the North.  相似文献   

12.
Fulu Tao  Zhao Zhang 《Climatic change》2011,105(3-4):409-432
Projections of future climate change are plagued with uncertainties from global climate models and emission scenarios, causing difficulties for impact assessments and for planners taking decisions on adaptation measure. Here, we developed an approach to deal with the uncertainties and to project the changes of maize productivity and water use in China using a process-based crop model, against a global mean temperature (GMT) increase scale relative to 1961?C1990 values. From 20 climate scenarios output from the Intergovernmental Panel on Climate Change Data Distribution Centre, we adopted the median values of projected changes in monthly mean climate variables for representative stations and driven the CERES-Maize model to simulate maize production under baseline and future climate scenarios. Adaptation options such as automatic planting, automatic application of irrigation and fertilization were considered, although cultivars were assumed constant over the baseline and future. After assessing representative stations across China, we projected changes in maize yield, growing period, evapotranspiration, and irrigation-water use for GMT changes of 1°C, 2°C, and 3°C, respectively. Results indicated that median values of projected decreases in the yields of irrigated maize without (with) consideration of CO2-fertilization effects ranged from 1.4% to 10.9% (1.6% to 7.8%), 9.8% to 21.7% (10.2% to 16.4%), and 4.3% to 32.1% (3.9% to 26.6%) for GMT changes of 1°C, 2°C, and 3°C, respectively. Median values of projected changes in irrigation-water use without (with) consideration of CO2-fertilization effects ranged from ?1.3% to 2.5% (?18.8% to 0.0%), ?43.6% to 2.4% (?56.1% to ?18.9%), and ?19.6% to 2.2% (?50.6% to ?34.3%), which were ascribed to rising CO2 concentration, increased precipitation, as well as reduced growing period with GMT increasing. For rainfed maize, median values of projected changes in yields without (with) consideration of CO2-fertilization effects ranged from ?22.2% to ?1.0% (?10.8% to 0.7%), ?27.6% to ?7.9% (?18.1% to ?5.6%), and ?33.7% to ?4.6% (?25.9% to ?1.6%). Approximate comparisons showed that projected maize yield losses were larger than previous estimates, particularly for rainfed maize. Our study presents an approach to project maize productivity and water use with GMT increases using process-based crop models and multiple climate scenarios. The resultant impact function is fundamental for identifying which climate change level is dangerous for food security.  相似文献   

13.
The impacts of the climate change predictions of four general circulation models (GFDL, GISS, OSU and UKMO) on net primary production (NPP) ofBetula pubescens, Fagus sylvatica and Quercus robur in The Netherlands were analysed using the process-based model FORGRO. FORGRO is a model suitable to simulate growth of managed mono-species stands. For the GCMs mentioned, both transient and equilibrium 2 × CO2 scenarios of temperature and precipitation change were evaluated and compared with responses under current climate. It was found that the NPP increases in the transient scenarios, but remains the same or declines in the 2 × CO2 scenarios. This is because respiration increases more with rising temperature than photosynthesis. During the transient scenarios this effect gradually increases, while in the 2 × CO2 scenario this effect is operating over the entire simulation period.If water limitation is taken into account, then the NPP of the reference scenario is reduced. In both the transient and 2 × CO2 scenarios mis water limitation is annulated, resulting in a stronger response of NPP compared to the situation without water limitation. This enhancement of the response is most pronounced in the transient scenario due to the gradual effect of temperature on respiration.Similar results were obtained with a version of FORGRO in which the photosynthesis module of HYBRID (PGEN) is incorporated, although the response in FORGRO-PGEN is usually higher than that of FORGRO. This is because the response of photosynthesis to CO2 rises with increasing temperature as defined in the PGEN-model, but not according to FORGRO.  相似文献   

14.
Over the past three decades, the drawdown of atmospheric CO2 in vegetation and soil has fueled net ecosystem production (NEP). Here, a global land-surface model (CABLE) is used to estimate the trend in NEP and its response to atmospheric CO2, climate change, biological nitrogen (N) fixation, and N deposition under future conditions from 2031 to 2100 in the Belt and Road region. The trend of NEP simulated by CABLE decreases from 0.015 Pg carbon (C) yr?2 under present conditions (1936–2005) to ?0.023 Pg C yr?2 under future conditions. In contrast, the trend in NEP of the CMIP6 ensemble changes from 0.014 Pg C yr?2 under present conditions to ?0.009 Pg C yr?2 under future conditions. This suggests that the trend in the C sink for the Belt and Road region will likely decline in the future. The significant difference in the NEP trend between present and future conditions is mainly caused by the difference in the impact of climate change on NEP. Considering the responses of soil respiration (RH) or net primary production (NPP) to surface air temperature, the trend in surface air temperature changes from0.01°C yr?1 under present conditions to 0.05°C yr?1 under future conditions. CABLE simulates a greater response of RH to surface temperature than that of NPP under future conditions, which causes a decreasing trend in NEP. In addition, the greater decreasing trend in NEP under future conditions indicates that the C–climate–N interaction at the regional scale should be considered. It is important to estimate the direction and magnitude of C sinks under the C neutrality target.摘要目前, 在区域尺度, NEP趋势变化的强度和影响机制还存在很大的不确定性. 针对这一问题, 我们选取了一带一路覆盖的区域为研究对象, 基于全球陆面模式 (CABLE)和第六次国际耦合模式比较计划 (CMIP6), 评估了历史和未来NEP趋势的变化, 分析了影响的机制. 从过去到未来, CABLE结果表明NEP的趋势从 0.015 Pg C yr?2 减少到 –0.023 Pg C yr?2; CMIP6结果为从0.014 Pg C yr?2转变为–0.009 Pg C yr?2. 气候变化是引起这一变化的主因. 我们的研究结果强调了碳-气候-氮相互作用的重要性, 这对碳中和目标下碳汇潜力的准确估算尤为重要.  相似文献   

15.
Temperature and CO2 are two of the main environmental factors associated with climate change. It is generally expected that elevated [CO2] will increase crop production. However, other environmental factors such as temperature along with management practices could further modify a crop’s response to CO2. The goal of this study was to determine the interactive effects of elevated [CO2] and above-optimum temperature on growth, development and yield of two peanut (Arachis hypogaea L.) cultivars, e.g., Pronto and Georgia Green. One of the objectives was to determine if there was any variation in response between these two cultivars with respect to possible adaptation to climate change. Peanut plants were grown in controlled environment chambers in the University of Georgia Envirotron under conditions of non-limiting water and nutrient supply. Plants were exposed to day/night air temperatures of 33/21°C (T A), 35.5/23.5°C (T A + 2.5°C), and 38/26°C (T A + 5°C) along with CO2 treatments of 400 and 700 μmol CO2 mol???1 air. The selected range of temperatures was based on the temperatures that are common for southwest Georgia during the summer months. The results showed that LAI of both cultivars responded positively, e.g., 28.3% for Pronto and 49.3% for Georgia Green to elevated [CO2]. Overall, elevated [CO2] alone resulted in a significant increase in total biomass at final harvest across all temperatures (P?< 0.0001), but decreased final seed yield (P?< 0.0005), except for Georgia Green at (T A + 5°C). The higher temperatures compared to T A reduced the relative response of total biomass to CO2 for both cultivars. It can be concluded that final seed yield response to CO2 depends on the sensitivity of individual cultivars to temperature, especially during the reproductive development stage.  相似文献   

16.
We measured CO2, CO, CH4, H2, and NO2 in air masses polluted by savanna fires over Côte d'Ivoire, western Africa. Elevated concentrations of these trace gases were found in fire plumes and also in extensive haze layers. Trace gas mixing ratios ranged as high as 605 ppmv for CO2, 14.8 ppmv for CO, 2.7 ppmv for CH4, 4.2 ppmv for H2, and 25 ppbv for NO2. We compare our emission ratios to those obtained in previous field and laboratory studies. The emission ratios, expressed as an average and as a range or as an average only, were: dCO/dCO2 5.3×10–2 (3–18×10–2); dCH4/dCO 5.3×10–2; dH2/dCO 2.4×10–1 and dNO2/dCO2 1.8×10–4 (1.5–2.2×10–4). The values found match those found during similar measurements, though our results point to rather vigorous burning in the savanna of western Africa.  相似文献   

17.
Climate output from the UK Hadley Centre's HadCM2 and HadCM3 experiments for the period 1860 to 2100, with IS92a greenhouse gas forcing, together with predicted patterns of N deposition and increasing CO2, were input (offline) to the dynamic vegetation model, Hybrid v4.1 (Friend et al., 1997; Friend and White, 1999). This model represents biogeochemical, biophysical and biogeographical processes, coupling the carbon, nitrogen and water cycles on a sub-daily timestep, simulating potential vegetation and transient changes in annual growth and competition between eight generalized plant types in response to climate.Global vegetation carbon was predicted to rise from about 600 to 800 PgC (or to 650 PgC for HadCM3) while the soil carbon pool of about 1100 PgC decreased by about 8%. By the 2080s, climate change caused a partial loss of Amazonian rainforest, C4 grasslands and temperate forest in areas of southern Europe and eastern USA, but an expansion in the boreal forest area. These changes were accompanied by a decrease in net primary productivity (NPP) of vegetation in many tropical areas, southern Europe and eastern USA (in response to warming and a decrease in rainfall), but an increase in NPP of boreal forests. Global NPP increased from 45 to 50 PgC y−1 in the 1990s to about 65 PgC y−1 in the 2080s (about 58 PgC y−1 for HadCM3). Global net ecosystem productivity (NEP) increased from about 1.3 PgC y−1 in the 1990s to about 3.6 PgC y−1 in the 2030s and then declined to zero by 2100 owing to a loss of carbon from declining forests in the tropics and at warm temperate latitudes — despite strengthening of the carbon sink at northern high latitudes. HadCM3 gave a more erratic temporal evolution of NEP than HadCM2, with a dramatic collapse in NEP in the 2050s.  相似文献   

18.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

19.
We explore allowable leakage for carbon capture and geological storage to be consistent with maximum global warming targets of 2.5 and 3 °C by 2100. Given plausible fossil fuel use and carbon capture and storage scenarios, and based on modeling of time-dependent leakage of CO2, we employ a climate model to calculate the long-term temperature response of CO2 emissions. We assume that half of the stored CO2 is permanently trapped by fast mechanisms. If 40?% of global CO2 emissions are stored in the second half of this century, the temperature effect of escaped CO2 is too small to compromise a 2.5 °C target. If 80?% of CO2 is captured, escaped CO2 must peak 300?years or later for consistency with this climate target. Due to much more CO2 stored for the 3 than the 2.5 °C target, quality of storage becomes more important. Thus for the 3 °C target escaped CO2 must peak 400?years or later in the 40?% scenario, and 3000?years or later in the 80?% scenario. Consequently CO2 escaped from geological storage can compromise the less stringent 3 °C target in the long-run if most of global CO2 emissions have been stored. If less CO2 is stored only a very high escape scenario can compromise the more stringent 2.5 °C target. For the two remaining combinations of storage scenarios and climate targets, leakage must be high to compromise these climate targets.  相似文献   

20.
利用大气植被相互作用模型AVIM2分析了时间长度为55 a、空间分辨率为0.05°×0.05°的新疆植被净初级生产力(NPP),分析了气候变化下NPP的时空演变特征,并研究了其与气温和降水量的关系。结果表明,(1)近55 a新疆NPP平均值为92.4 gC·m~(-2),其中1993年最高为107.1 gC·m~(-2);2014年最小为79.0 gC·m~(-2)。近55 a新疆NPP总量的时间动态变化呈缓慢增加趋势,每10 a的递增速率约为1.8 gC·m~(-2)。(2)夏季是NPP最大的季节,其次是秋季,春季列第三位。山区NPP值较平原高。(3)新疆NPP对降水量变化呈显著正相关,气温的变化对NPP的影响不显著,说明降水的增加相对气温的升高,对新疆植被净初级生产力的变化有着更加积极的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号